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Summary 

Experiments conducted at the cm to decametre/hectometre scale provide a fundamental under-
standing of physical processes leading to fracture creation and reactivation. The current develop-
ment of monitoring techniques, including very sensitive earthquakes sensors as well as defor-
mation monitoring will allow to significantly lower the completeness magnitude and hence bring 
the OEF models to a new level. In this deliverable, we present two datasets at different scale and 
pave the way to the development of new OEF models that account for a more advanced physical 
understanding of the earthquakes processes. 
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1. Introduction 

Laboratory and in-situ experiments provide essential information at small scale. It has been often 
suggested that the processes occurring at the cm to decametre scale are representative of the 
processes occurring in a real fault zone. This makes the lab experiments fundamental to under-
stand the physical processes leading to ruptures. However, to which extend the OEF models can 
be scaled from/to this scale is uncertain, and novel approaches will need to be implemented as 
new information are collected at the laboratory and in-situ scale (rock lab).  
Laboratory experiments provides a perfect environment to create repeatable conditions, while in-
situ experiments are all unique but in controlled conditions and forcing. The development of new 
technologies to monitor extremely small earthquakes (at the nano and pico-scale) combined with 
the technological advancement on monitoring deformation will open the path to the creation of 
new empirical models, potentially scaling from this small scale to the natural environment. 
In this deliverable, we present the data collected at both laboratory and rock-lab scale, and pre-
sent the preliminary analysis aimed at fostering the use of these dataset to develop new OEF 
models. The laboratory dataset has been acquired at the newly create LabQuake machine at ETH 
Zürich, while the rock-lab scale dataset was collected during a recent injection experiment at the 
Bedretto Underground Laboratory for Geoenergy and Geosciences. In particular for this latest, we 
tried operational forecasting with simplified models and reported on the lessons learned by doing 
such an exercise: this will be pivotal for the development of new OEF models. 

1.1 LabQuake 

LabQuake is a state-of the-art triaxial rock testing system for the geomechanical testing of both 
soft and hard rocks with a number of unique capabilities targeted at enhancing laboratory seis-
mology (Figure 1a). LabQuake can be used for systematic experimental investigations of the ef-
fects of pore-fluid variation in fractured media by measuring poroelastic, mechanical, hydraulic 
and, thermal properties, as well as acoustic emissions of intact, fractured rocks and saw cut sam-
ples. We are able to consider a wide range of stress regimes and fracture orientations that is 
representative of faulting conditions in the upper crust. The system can achieve confining pres-
sures up to 170 MPa, pore pressures of up to 158 MPa, and exhibits a frame stiffness of 2500 
kN/mm, making it capable to perform post-peak failure tests on hard rocks and can impose com-
plex fracture networks through failure tests.  
Figure 1c shows a schematic diagram of the sample layout and general loading of a triaxial sample 
for intact, fractured and (saw-cut) frictional rock testing. Advances in triaxial testing in LabQuake 
is apparent with deployment of distributed fibre optic (FO) sensing and broadband AE sensor 
(Figure 1b) but also with advanced processing tools thanks to the partnership with Elsys Instru-
ments AG. Since 2018 they have provided support in the development of the unique and flexible 
data acquisition system. They have provided advanced hardware and software solutions provided 
for AE sensor development including a signal filter bank and the ability to perform tomographic 
analysis and continuous data recording simultaneously. 
 

 
Figure 1: (a) Picture of the fully-operational LabQuake machine installed at ETH Zurich in the Rock Physic and Me-
chanics Laboratory. (b) Version of high-fidelity, broadband, high-temperature and high-pressure AE sensor designed 
exclusively for use inside the triaxial cell. (c) Configuration of the sample geometries that can be studied in the 
LabQuake machine. 
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1.2 The Bedretto Underground Laboratory for Geoenergy and Geosciences 
(BULGG) 

The Bedretto Underground Research Laboratory (Bedretto URL), currently known as Bedretto Un-
derground Laboratory for Geoenergy and Geosciences (BULGG), is a research infrastructure lo-
cated in the Bedretto Tunnel in the Swiss Central Alps, which is a 5218 m long that connects the 
Furka railway tunnel with the Bedretto Valley (Figure 2). Since construction in 1982, the Bedretto 
tunnel remained unlined and unpaved and was mostly used for ventilating and draining the Furka 
tunnel. In 2018, the Bedretto tunnel has been made available by its owner (the railway operator 
MGB) to ETH Zürich to conduct research related to geoenergy and other topics. The tunnel runs 
from NW to SE approximately at an elevation of 1562 m a.s.l. at the junction with the Furka tunnel 
to 1480 m at the southern portal. The maximum overburden is ~1593 m at tunnel meter (TM) 
3100 measured from the south portal. At the laboratory level, which occupies a 100 m long en-
larged section of the tunnel at 2000 – 2100 TM, the overburden is about 1000 m. The host rock 
of the laboratory is a granitic body, the Rotondo granite, which has a boundary to metamorphic 
crystalline rock units at TM1138 and reaches beyond the junction to the Furka tunnel (Figure 2b). 
At end of 2020, during which some injection activities took place, there were nine boreholes drilled 
(Figure 1c-d). Four boreholes were fully dedicated to geophysical monitoring (MB1 to MB4) and 
two dedicated to fluid injection/monitoring (ST1 and ST2). 
 

 
 
Figure 1: (A,B) Overview and geological context of the BULGG (adopted from SED) and (C, D) borehole configuration 
at the BULGG at the end of 2020. 
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2. Fracture creation at cm scale (LabQuake) 

The work presented here is substantially based on the results by Niu (2021). Three confined 
compression tests on the intact cylindrical Rotondo granite samples have been conducted, through 
which the loading protocols and the parameters in the acquisition system are improved step by 
step. One particular experiment (LBQ2) shows seismic and aseismic processes before the failure 
of the intact Rotondo granite sample have been studied.  
After the first two stages aimed at characterizing the rock sample, the main goal of Stage III is to 
study the seismic and aseismic deformation of the sample before and during the failure of the 
sample. The loading rate was set to 0.10 mm/min to slow down the approaching of the rock 
sample to failure. Ultrasonic tomography was conducted every 100 s. The peak stress of ∼225 
MPa was reached at around 893 s after the starting of the ramp up. The instant when the stress 
started to drop, the loading system was set to hold position. This enabled to observe a less violent 
stress drop of about 48.4 MPa for around 40 seconds (Figure 3). 
 

 
Figure 3: The loading protocols in the Stage III of LBQ2. The sample was directly loaded to failure. 

During the experiment, Acoustic Emission (AE) were recorded, and the event selection is done 
with the short-time average/long-time average (STA/LTA) algorithm (Trnkoczy, 1998).  
In the experiment LBQ2, after the event selection and classification, the use of an ad-hoc adapted 
AIC picker (Ada-AIC) enables getting the P-wave arrivals on all the traces, rule out the events 
that are not picked accurately and reduced the temporal resolution in detection to 2 ms. AE events 
are then located by using FaATSO: an inversion code that is capable of simultaneously locating 
seismic events and per- forming ultrasonic tomograph (Brantut, 2018). 
Fiber optics cable are wrapped around the sample to measure volumetric strain. The fiber optics 
interrogators used in the present experiments were developed following the Rayleigh-based opti-
cal frequency domain reflectometer (c-OFDR). Due to existence of AE sensors, the fiber optics 
cables cannot cover the entire surface of the rock sample. The interpolation in space is completed 
with a piecewise cubic, continuously differentiable and approximately curvature-minimizing poly-
nomial surface (Nielson, 1983). 

2.1 Fracture development and acoustic emissions 

The above procedures eventually leave us with 1978 events whose locations and moment tensors 
can be inverted. The magnitudes of the moment tensors from LBQ2 are shown in Figure 4. From 
the FMD plot, the b-value is estimated as 0.88±0.02 with a magnitude completeness of Mw -7.9. 
This magnitude is at the same scale that grains of a few millimeters can generate (Manthei and 
Plenkers, 2018), which is the size of the most minerals in Rotondo granite (Rast, 2020). It is also 
observed that the data significantly deviates from the fitting results at the magnitude larger than 
around Mw -6.5. 
More experiments are required to understand if this deviation at large magnitude is introduced by 
the physics of the sample failure or from the processing methodology. We noticed that early in 
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the loading, events of large magnitude occurred and resulted in swarms of earthquakes (Mogi, 
1966) and a step increase in the cumulative seismic moment. However, most major events are 
observed in the few seconds before the failure of the entire sample. From the swarms of earth-
quakes in Figure 4c, three major groups, between which no event occurs, are observed. The 
average magnitude and the number of events in each group increase with time. The first group 
between 870 and 880 s contains only a few events and is located at the bottom of the events 
cluster that propagated upward (see Figure 4b), probably related to the initial coalesce of mi-
crocracks. The second group occurs between around 890 and 900 s along with the upward prop-
agation of events. After 900 s and before the eventual failure of the sample, much more events 
appear and corresponds to the migration of events downward along the changed direction. 

 
Figure 4: (a) Fitting of the frequency magnitude distribution of the events with estimation of the magnitude of com-
pleteness. (b) The cumulative moment release in time. (c) The magnitude of all events over time. The three dashed 
circles in (c) marks the three different clusters. 

Aseismic deformation may be the predominant process during the failure of rock in the confined 
compression test. In LBQ2, it is found that the seismic deformation only accounts for [0.07 to 
4]×10−2% of the total anelastic deformation and it seems to play a more important role (two 
orders of magnitude larger) as the sample approaches failure. Such relationship is based on the 
measurement of the distributed strain field and is, therefore, more representative of the entire 
volume than the point measurement. 

 

2.2 Preliminary statistical analysis 

Temporal distribution of the occurrence of the events is shown Figure 5. The cumulative number 
of events and the occurrence rate is plotted against the time to failure. The occurrence rate curve 
is fitted against the modified Omori’s law (Lei and Ma, 2014). The exponential index is around -
0.83, close to the value pointed out by Lei et al. (2003). 
In Figure 6, temporal variation of fractal dimension, b-value and types of moment tensors are 
shown together for comparison. 
Spatial distribution is characterized by the change of fractal dimension with time. As known from 
the locations of the events, a fault first propagated upwards from around 890 s to around 900 s. 
During this period the fractal dimension increased indicating the delocalization of events as the 
fault propagated. Next, the events localized again from 900 s to around 906 s, representing the 
nucleation of the new fault that would propagate in a different direction later. Then, during the 
propagation of new faults, the fractal dimension oscillated around 1.5, probably indicating the 
stop and propagation of the fault before failure. Immediately before the failure (around 931 s), 
the fractal dimension dropped from ∼1.6 to ∼1.4, which may correspond to the nucleation of the 
rupture front at a large aperture. 
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Figure 5. (a) The cumulative number of events against the time to failure. (b) The occurrence rate against the time 
to failure at the log-log scale. The dashed gray curve is the raw occurrence rate computed from the full seismic catalog 
in LBQ2. The solid black curve smooths the variation for better visualization of the trend and red curve is fitted using 
the raw data against the modified Omori’s law.  

b-value is an often-used indicator of seismicity in the sample. The lower the b-value, the higher  
the probability that large seismic events may occur. From Figure 5, from around 890 to around 
898 s, during the propagation of the first fault, b-value drops from around 1.32 to around 0.88. 
Then, the position of the loading piston was held, accompanied by a small recovery of b-value. It 
is kept around 1.00 from 903 to 923 s until a further drop to around 0.80 right before the failure 
of the rock. 
In Figure 6c, we looked at the types of events that also vary with the development of damage in 
the rock sample. During the propagation of the first fault, angles between the normal and the slip 
vectors increase from around 100 to 108 degrees, together with the drop of DC component. It 
shows that the sample is still shrinking and the events are becoming more compressive as the 
fault propagates. But since the change of the direction of the fault, the angles start to drop and 
reach 90 degrees at around 923 s. Then, the angles oscillate around 87 degrees. This indicates 
that events become predominantly expansive before the failure of the sample.  
Previous studies tried to find correlations between the b-value and the fractal dimension. Lei et 
al. (2000; 2003) found that scattered background AEs results in relatively higher b-values. By 
assuming constant stress drop and isotropic rupture, it was estimated and also observed by Goe-
bel et al. (2017) that the fractal dimension is nearly proportional to b-value with a slope of around 
2. However, the spatio-temporal variation of the two variables was not looked at.  
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Figure 6. (a) The change of deviatoric stress (black dots) and moment magnitude of events (blue dots) in time serving 
as the indicator of the loading stage as statistical variables varies. The pink dots indicate the start of nucleation and 
propagation of the first fault, while the green dots mark the failure of the sample (the time when the sudden stress 
drop occurs). (b) Temporal variation of the b-value and the fractal dimension. (c) Temporal variation of different 
components of the moment tensors (the solid and dashed curves) and of the angle between normal and the slip 
vectors (the red curve). 

2.3 Future activities and potential added value for OEF 

Much more improvement can be made technologically, but the ultimate goal is to assist a better 
understanding of the physical processes in the failure of rocks. We highlight here some point that 
could provide a step-forward in the development of new OEF models: 

• It is estimated that seismic deformation takes only a tiny proportion of anelastic defor-
mation. The combination of FO and AE provides an enhanced understanding on how both 
aseismic and seismic processes occur. A model (empirical or hydro-mechanical) accounting 
for such behaviour may provide advanced forecasting capabilities, with the overall goal of 
predicting when the failure occurs. 

• Near-real-time stress inversion is potentially a powerful tool for understanding the aseis-
mic processes inside the rock if the its reliability can be justified. If the techniques are 
upscaled to natural seismicity, this would provide a unique tool to better forecast seismic-
ity. 

• The current developed methods also lay the foundations for the study of the failure of rock 
during the injection of fluid, which is the major task of LabQuake. The physical processes 
can be more complex since hydro-mechanical coupling will be involved. But with the frame-
work developed and the familiarities gained so far, it is ready to overcome the forthcoming 
challenges. 

• LabQuake has the capabilities to perform injection experiment, which would show if and 
how the b-value depends on human operations. While it may not be too relevant for natural 
OEF models, the identified behaviour may lead the path to better forecasting and planning 
the seismicity linked to geoernergies. 
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3. Fracture stimulation at the decameter scale (Bedretto URL) 

During the November/December 2020 a multi-stage stimulation was performed through boreholes 
ST1 and ST2. The injection occurred in packed interval, with the target depth varying inside each 
borehole. The injection depth varies between 268 and 344 m along borehole ST1 length, and 306 
and 345 m along borehole ST2 length.  
The activities started on Nov. 11th, 2020 in borehole ST2 at a target depth between 306-312 m, 
followed by progressively increasing the depth of the two-packer system until Nov. 29th, 2020. 
For most intervals, a test stimulation of about 5 m3 was performed before 50 – 60 m3 were actively 
injected into the rock (i.e. accounting for recorded bypass).  Such test stimulation (referred to as 
TS-TLS) was needed to update some forecasting models and get a first understanding on how 
risky was to stimulate that interval and to test forecasting capabilities of the model. Then some 
minor re-stimulation occurred for the uppermost intervals, but with volumes limited to about 10 
m3. In terms of seismicity, during the TS-TLS between 64 and 128 events were located, with 41 
to 75 events above the magnitude of completeness Mc in the range -3.15 and -3.01 and a maxi-
mum observed magnitude between Mw -2.77 and -1.88. During the main injection cycles, the 
number of located events ranged between 94 and 383, of which 57 to 231 above completeness 
that increased to the range Mc -3.15 to -2.91 with the maximum magnitude Mw between -1.88 
and -1.71. The calculated b-value depended on the forecasting model, but the average for the 
whole ST2 stimulation was estimated as 2.2, calculated for a total of 861 events above complete-
ness (Mc = -3.01). Figure 7 shows the recorded seismicity and pressure for the entire stimulation 
in ST2, as well some forecasting models fitting (more details below). 
 

 
Figure 7. ST2 stimulation November/December 2020. (top left) imposed flow rate (black line) and recorded seismicity 
(gray dots).; (top right) recorded pressure (red line) compared to recorded seismicity (gray dots); (bottom left) 
models fitting to the evolution of total number of events; (bottom right) frequency-magnitude distribution and GR 
fitting for two forecasting models. 

 
The stimulation of borehole ST1 started on Dec. 12th, 2020 at a target depth between 278-287 m. 
For this borehole, no TS-TLS injection was performed and a more powerful pump was available, 
that allowed injecting a larger volume of fluid (between 65 – 160 m3). In this case the stimulation 
did not proceed with increasing the injection depth, as the two-packer system was moved first in 
between the most promising fractures identifying in the logs with the most bottom interval stim-
ulated on Dec. 19th, 2020. The fracture systems seem much more permeable in this borehole 
compared to ST2, and indeed only four out of seven intervals showed a good pressurization to 
induced seismicity.  The number of located events was much smaller compared to the ST2, ranging 
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between 1 and 301 events located, and when possible, with 20 to 152 events above completeness 
that ranged in between -2.86 and -2.7. The maximum observed magnitude Mw was in the range 
–2.54 and -2.24. For the whole ST1 stimulation, the average b-value was in the order of 3, cal-
culated for 500 events above completeness Mc -2.82. Figure 8 shows the recorded seismicity and 
pressure for the entire stimulation in ST1, as well some forecasting models fitting (more details 
below). 
 

 
Figure 8. ST1 stimulation November/December 2020. (top left) imposed flow rate (black line) and recorded seis-
micity (gray dots).; (top right) recorded pressure (red line) compared to recorded seismicity (gray dots). To note as 
some cycles produced very low pressure with little to no seismicity; (bottom left) models fitting to the evolution of 
total number of events; (bottom right) frequency-magnitude distribution and GR fitting for two forecasting models. 

3.1 Lessons learned while attempting real-time forecasting 

We took the opportunity of the TS-TLS to test forecasting capabilities of induced seismicity models. 
While such models are not really usable for natural seismicity, here we report the lessons learned 
while attempting real-time forecasting and such a lesson is relevant for the future development of 
OEF models. 
We tested three different models, the first two are related to the same class of “empirical” Non-
Homogeneous Poisson Processes (NHPP) models and are described in details by Broccardo et al. 
(2017). In substance, the model has three parameters to link the injection flow rate to rate of 
seismicity, and it is based on the pioneering study of Shapiro et al. (2007). The two variations 
considered here accounts for a Maximum-Likelihood estimate of the three parameters (EM1_MLE) 
or for a Bayesian estimate of the parameters (EM1_BH). 
The third model, referred to as HM0, accounts for a simplified hydro-mechanical formulation, in 
which the flow rate follows an analytical solution for a cylinder and the seismicity is computed as 
function of the simulated pressure front. 
The main lessons learned are: 

• One of the first questions we wanted to answer was: How much data do we need to fore-
cast seismicity? By doing the TS-TLS experiment we realized that it was impossible to 
answer, as it really depended on the given interval being stimulated. Figure 9(top row) 
shows an example on how the models clearly were not able to predict the main stimulation 
based only on the first 5 m3, while a little more data may actually help in having a better 
forecasting (bottom row). However, this could be strictly linked to the given interval, and 
to verify a general pattern a full pseudo-forecasting test would need to be performed. In 
general, it is important to have real-time assessment, have continuous data-feeding and 
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to look at the short term only (next hour), rather than trying to predict long-term with 
little information. 

 

 
Figure 9. Testing forecasting capabilities of the three models. The top row shows an example of forecasted seismic-
ity based on the TS-TLS only (i.e. the first 5 m3). The bottom row shows how the forecasting may improve with 
more data (30 m3). 

• Was the seismicity detection in “real-time” accurate? Events picked by hand, so at time of 
forecast are not necessarily accurate. Figure 10 shows how the number of events strongly 
changed from the time of forecast (left) and in post-processing (right): at the time of 
forecast, the number of events was definitely too little to provide a reliable estimate of the 
model parameters. Full real-time forecasting would have updated automatically the 
fit/forecast. 

 

 
Figure 10. Comparison of real-time data and pot-processed. 
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• Magnitudes could be a problem for OEF models. Current models tested at Bedretto do have 
the ability to “communicate” when the fit is unreliable. Figure 11 shows the example of 
the FMD recorded for the stimulation of interval 1 in ST2, hard to understand what is the 
real Gutenberg-Richter fit or even if the data are reliable or indicative of a physical process. 
Understanding some observations have a real physical meaning in real-time is nearly im-
possible. 
 

 
Figure 11. Frequency magnitude distribution recorded during the stimulation of Int. 1 in borehole ST2.  

• An extremely bad case for the current models: high flow rate but little pressure increase 
and no seismicity observed. This occurred for a couple of intervals in boreholes ST1. For 
the current models would be impossible to state if a large event will occur. We could rely 
on pressure (i.e. HM0), but stimulating high transmissive interval is challenging, fluid can 
migrate far, and trigger seismicity at shallower depth.  

3.2 From DEEP to RISE: Adapting CSEP model comparison for induced seismicity 

In the framework of developing a forecasting system as described above, it is fundamental to 
compare model forecasts. In induced seismicity, we refer to the Adaptive Traffic Light System 
(ATLS) as a tool that embeds sophisticate methods for characterizing the seismicity and producing 
forecasts on the seismicity rate/magnitude to evaluate hazard and risk. Such an ATLS is developed 
in the DEEP project (http://deepgeothermal.org/home/) and does not constitute a direct output 
of RISE, but the development of the tools needed are of interested and could be easily adapted 
for forecasting natural seismicity in the context of OEF. We report here the current methodology 
employed to compare models. 
We used the data for the interval 5 of ST2 to test a model comparison approach substantially 
based on CSEP approach but adapted to the conditions posed by the models described above (i.e. 
only temporal evolution and not spatial forecasting). In the given interval stimulation, a total of 
115 earthquakes were recorded with magnitudes ranging from -3.2 to -1.8. We split the dataset 
at time 15 hours after the start of the injection in a training phase which contains 80 earthquakes 
with the rest belonging to the validation phase. 
We fit the model described above and parameter uncertainties in the training phase for both EM1 
and HM0 models (Fig. 12). After time 15 hours, we use the model in a predictive way to forecast 
the validation phase by only using hydraulic data as input (Fig. 12). For EM1 models we produced 
1000 synthetic seismicity catalogs by tapping the parameters from their uncertainty distributions, 
while for HM0 we simulated a single realization. The results are reported in Fig. 12, where we 
present for EM1 models the median as best estimate of the number of events together with the 
variability of the simulated catalogs and parameters (shaded areas in Fig. 12 left and middle 
panel), while for HM0 we also show the single simulated catalog along with the input pressure 
profile used (Fig. 12 right panel). The median forecast catalogs of EM1 models overestimate the 
observed seismicity rate (thin black line in Fig. 12, left panel). However, the larger variability of 
forecast catalogs of EM1_BH can well reproduce the observed earthquake rate (see blue shaded 
area in Fig. 12 left panel). This large variability in the forecast arises from the larger uncertainties 

Problem with data or 
physical process?

?
?

?
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associated with this EM1_BH (see Fig. 12 middle panel) compared with EM1_MLE. This implies 
that even if EM1_BH has larger uncertainties associated to the model parameter and apparently 
less precise, this model is more accurate in the simulation of forecast catalogs and better describe 
the temporal evolution of the observed seismicity of the validation phase. HM0 instead slightly 
underestimates the observed seismicity in the validation phase suggesting that Monte Carlo sim-
ulation of this model can be a promising path to explore.  
 
 

 
Figure 12. From left to right: panel 1) Cumulative number of events for observed data and simulated by the three 
seismicity models used in main text. Vertical dashed line indicate separation in training and validation data. The 
light blue and red shaded areas represent the 25th and 75th percentiles plotted around the median value of the N 
synthetics catalogues simulated from EM1_MLE and EM1_BH., respectively. Panel 2) Frequency magnitude distribu-
tion and fit, shaded area (light blue and red) indicates the uncertainties in the parameters of Eq.1. Panel 3) Pres-
sure profile (black/gray) and fit (orange) for model HM0. 

 
In order to proper compare the different models, we calculate the Probability Gain (PG) as loga-
rithm of the empirical probability of reproducing the observed number of events in the given time 
bin. If a given model does not foresee the simulation of a number of realizations to compute an 
empirical distribution, we use the classical CSEP approach and take as PG the Poissonian Log-
Likelihood. We have calculated the information gain as punctual and total PG using EM1_MLE as 
a reference model in time bins of 1800 sec. We present the results in figure 13 in terms of the 
cumulative evolution of the log-likelihood/log-probability values (left panel) for the three models 
and the PG curves form EM1_BH and HM0 against EM1_MLE (right panel). As expected, the best 
forecast performance is of EM1_BH which outperforms the other two models.  
 

 
Figure 13.  (left) Cumulative value of the log-probability/log-likelihood. (right) Punctual probability gain (PG); the 
total PG for each model is indicated in the legend. The PG is calculated against the EM1_MLE model and indicates 
that EM1_BH and HM0 perform almost always better in forecasting seismicity than EM1_MLE. 

In summary, for the dataset from the Bedretto Underground Lab, where the number of induced 
earthquakes is relatively small, the best model is the one of larger parameter uncertainties, i.e. 
EM1_BH. Worth pointing out that both EM1_MLE and the median model EM1_BH (blue and red 
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dashed lines in Fig. 12 left panel) are very similar in the forecast performance. This arises from 
the use of the small amount of data in the likelihood function of the two models. The difference 
with the Bayesian approach is that can incorporate additional information in the prior distribution 
model that combined with the likelihood model (data model) produce a better estimation of the 
epistemic uncertainties when a small sample dataset is used to fit the model. This is a well-known 
advantage of using Bayesian hierarchical modeling in cases where only the data per se are not 
enough to capture the variability of the process. In essence, the larger uncertainties in the model 
parameters are not always indicative of a poor fit, rather they indicate that data alone cannot 
suffice to fully capture the epistemic uncertainties in the studied process.  
 

3.3 Future activities and potential added value for OEF 

The November/December 2020 stimulation at Bedretto was only the first attempt to enhance the 
hydraulic connection between wells ST1 and ST2. New activities are foreseen in the Fall 2021, 
when the upper part of the boreholes will be stimulated. This are the future advancements that 
will help producing more reliable forecasting: 

• A more advanced method for characterizing the seismicity will be in place, with AE sensor 
similar to the ones used in LabQuake that will allow to lower the completeness theoretically 
to -5 and hence largely increasing the total number of recorded events. The sensor cov-
erage will also strongly improve, as the stimulation will occur in the dense region of the 
MBs boreholes (Fig. 2) 

• We have further refined the system that manages the model execution (referred to as RT-
Ramsis). This will allow for full real-time forecasting of the number of events and we will 
better test the forecasting capabilities of our models. This will be a unique opportunity to 
have a forecasting model actually performing in real time at this “scientific” scale. 

• While the models will not be adapted at the current stage, in the future we foresee the use 
of standard OEF models also for induced seismicity. In particular it will be important to 
implement models that features spatial forecasting of seismicity (e.g. ETAS) to be com-
pared with more advanced hydro-mechanical and physics-based approach. 

 

4. Conclusion 

In this deliverable, we have presented the preliminary results from experiments performed at 
laboratory and rock-lab scale. Both environments allow for controlled experiments at different 
scales, ranging from cm of a small samples, to decametre and hectometre scale in the under-
ground laboratories.  
The newly developed LabQuake machine at ETH Zurich features enhanced real-time characteriza-
tion of acoustic emission and deformation, and it constituted the perfect, controlled playground to 
test repeatability of physical processes to be included in the future OEF models. In this deliverable 
we show an example experiment, featuring already some preliminary statistical analysis and 
showing how the b-value changes when approaching failure. If the models produced within RISE 
are scalable, LabQuake will provide dataset to test such a scalability. 
On the other side, the dataset produced at the Bedretto Underground Laboratory are unique, 
despite the control played by modulated injection activities. In this deliverable we have summa-
rized the lessons learned in the first attempt of performing live forecasting (albeit not exactly real-
time). Such an exercise was accompanied by developing of models and model comparison, in a 
similar approach to what is foreseen in CSEP. The lessons learned will be pivotal for the future 
activities and the dataset produced at Bedretto in the Fall 2021 will be the first of its kind at this 
scale, and it will constitute the ultimate testbench for the scalability of OEF models. 
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