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Summary 

This deliverable collects all the scientific results obtained during the first 36 months of RISE in the 
ambit of Task 3.2 (Enhancing earthquake predictability).  
Such task was planned to explore the limits of earthquake predictability. Hypotheses investigated 
here are not necessarily yet ready to be implemented as a forecasting model, but have the po-
tential to reduce the limits of earthquake predictability. The task is subdivided into three subtasks 
as shown in Table 1. 
 
Subtask Short Description 
Subtask 1 Search for precursory spatiotemporal seismicity patterns before and after strong 

earthquakes 
Subtask 2 Analysis of the reliability of the magnitude-independence assumption 
Subtask 3 Search for additional explanatory variables in the triggering properties of earth-

quakes 
Table 1. Breakdown of RISE Task 3.2 

 
In subtask1 precursory spatiotemporal seismicity patterns before and after strong earthquakes 
were searched, using the homogenized and higher resolution catalogue already available for Italy 
and Southern California and subsequently the new ones developed in Task 2.4 for other EU re-
gions. In the recent literature, the b-value of the Gutenberg- Richter (GR) frequency-magnitude 
distribution was hypothesized to be a proxy of differential stress (DS, the difference between 
minimum and maximum stress eigenvalues) within the Earth’s crust. In particular low b-values 
seems to be associated with high levels of DS and vice versa high b-values with low DS. Thus, 
observations of low b-values might indicate the phase of preparation of an impending strong 
earthquakes while high b-values a quiet period. This hypothesis can be investigated by analysing 
the time evolution of b-value computed using seismic catalogues with homogeneously determined 
magnitude. At present only the catalogues of Italy since 1995 and of Southern California since 
1981 appears to comply such requirement. Other parameters that were planned to be studied are 
the a-value (productivity) of the GR and the parameters of various models of seismic sequence 
time-decay (e.g. p and c of the Omori law) based on likelihood analysis. 
 
In subtask2, the reliability of the magnitude-independence assumption, i.e., the earthquake mag- 
nitude of future earthquakes is independent and identically distributed (usually, according to a 
truncated Gutenberg-Richter law) has been explored. In particular, in this subtask it has been 
investigated if the magnitude-frequency distribution varies in space and time analyzing the new 
generation of earthquake catalogs, which have expanded the detection capabilities increasing the 
number of earthquakes of a factor of 10 or more.  
 
In subtask3, systematic empirical studies to search for additional explanatory variables in the 
triggering properties of earthquakes were conducted. Obvious candidates include (i) surface heat 
flow, (ii) geodetic strain-rate, (iii) thickness of the seismogenic zone, (iv) lithology (inferred rigid-
ity, rheology if available), (v) plate tectonic setting, (vi) inferred regional stress field, (vii) trig-
gering susceptibility, (viii) time since last major earthquake (on well-characterised faults), and 
some variables that can be measured during a seismic sequence such as (i) source focal mecha-
nism, (ii) aseismic after slip moment, (iii) stress drop, and (iv) Shake Map footprint. Specifically, 
dependencies between these variables and various clustering properties including (i) size/tim-
ing/location of largest triggered event, (ii) triggering productivity, (iii) foreshock statistics, (iv) 
swarm-like behaviour has to be searched. The research benefitted from advances in observational 
capabilities (T2.4) and exploit computational statistics to uncover hidden relationships. 
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1. Chapter 1 - Search for precursory spatiotemporal seismicity 
patterns before and after strong earthquakes 

 
Forecasting methods taken from the literature and newly developed were applied to Italy by the 
retrospective testing using the HOmogeneized InstRUmental Seismic Catalog (HORUS) of Italy 
from 1960 to present partially developed also in Task 2.4 of RISE (Lolli et al., Seismol. Res. Lett. 
91, 3208–3222, doi: 10.1785/0220200148). In particular, Gasperini et al. (2021) developed an 
alarm-based forecasting method based on the occurrence of strong foreshocks. This was tested 
using the Molchan diagrams and the Area Skill score approaches. Considering an alarm duration 
of three months, the algorithm retrospectively forecast more than 70 per cent of all shocks 
(mainshocks+aftershocks) with Mw ≥ 5.5 occurred in Italy from 1960 to 2019 with a total space–
time fraction covered by the alarms of the order of 2 per cent. Considering the same space–time 
coverage, the algorithm is also able to retrospectively forecasts more than 40 per cent of the 
mainshocks only with Mw ≥ 5.5 of the seismic sequences occurred in the same time interval. 
Biondini et al. (2022) applied to Italy the EEPAS (Every Earthquake a Precursor According to Scale) 
forecasting model. EEPAS is a is a space–time point-process model based on the precursory scale 
increase phenomenon and associated predictive scaling relations. It has been previously applied 
to New Zealand, California and Japan earthquakes with target magnitude thresholds varying from 
about 5 to 7. In all previous application, computations were done using the computer code imple-
mented in Fortran language by the model authors. Biondini et al. (2022) developed a suite of 
computing codes completely rewritten in Matlab and Python. They first compared the two software 
codes to ensure the convergence and adequate coincidence between the estimated model param-
eters for a simple region capable of being analyzed by both software codes, then using the rewrit-
ten codes they optimized the parameters for a different and more complex polygon of analysis 
using the catalog data from 1990 to 2011. Finally, they performed a retrospective (pseudo-pro-
spective) forecasting experiment of Italian earthquakes from 2012 to 2021 with Mw³5.0 and com-
pares the forecasting skill of EEPAS with other forecasting models using the standard test devel-
oped in the ambit of the Collaboratory for the Study of Earthquake Predictability (CSEP). The 
EEPAS approached demonstrated to be slightly worser than ETAS for short forecasting windows 
(3 months) and better for longer windows (up to 10 years). 
Another forecasting approach is that followed by Gulia et. al. (2020, 2021) for the application of 
the Traffic Light System (TLS) to the pseudo-prospective forecasting of Ridgecrest Mw 7.1 earth-
quake of July 2021, based on the temporal variation of the b-value of the frequency-magnitude 
(Gutenberg-Richter) relation. In normally decaying aftershock sequences, the b-value of the af-
tershocks was found, on average, to be 10%–30% higher than the background b-value. A drop 
of 10% or more in “aftershock” b-values was postulated to indicate that the region is still highly 
stressed and that a subsequent larger event is likely. In this Ridgecrest case study, after analyzing 
the magnitude of completeness of the sequences, they were able to determine reliable b-values 
over a large range of magnitudes within hours of the two mainshocks. They then find that in the 
hours after the first Mw 6.4 Ridgecrest event, the b-value drops by 23% on average, compared 
to the background value, triggering a red foreshock traffic light. Spatially mapping the changes in 
b values, they identify an area to the north of the rupture plane as the most likely location of a 
subsequent event. After the second, magnitude 7.1 mainshock, which did occur in that location 
as anticipated, the b-value increased by 26% over the background value, triggering a green traffic 
light. Finally, comparing the 2019 sequence with the Mw 5.8 sequence in 1995, in which no 
mainshock followed, they find a b-value increase of 29% after the mainshock. Their results sug-
gest that the real-time monitoring of b-values is feasible in California and may add important 
information for aftershock hazard assessment. 
Gulia and Gasperini (2021) observed that artifacts often affect seismic catalogs. Among them, the 
presence of man-made contaminations such as quarry blasts and explosions is a well-known prob-
lem. Using a contaminated dataset reduces the statistical significance of results and can lead to 
erroneous conclusions, thus the removal of such nonnatural events should be the first step for a 
data analyst. Blasts misclassified as natural earthquakes, indeed, may artificially alter the 
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seismicity rates and then the b-value of the Gutenberg and Richter relationship, an essential in-
gredient of several forecasting models. 
At present, datasets collect useful information beyond the parameters to locate the earthquakes 
in space and time, allowing the users to discriminate between natural and nonnatural events. 
However, selecting them from webservices queries is neither easy nor clear, and part of such 
supplementary but fundamental information can be lost during downloading. As a consequence, 
most of statistical seismologists ignore the presence in seismic catalog of explosions and quarry 
blasts and assume that they were not located by seismic networks or in case they were eliminated. 
They show the example of the Italian Seismological Instrumental and Parametric Database. What 
happens when artificial seismicity is mixed with natural one? 
 
Published papers  
 
Gasperini, P., E. Biondini, B. Lolli, A. Petruccelli and G. Vannucci (2020). Retrospective short-term 
forecasting experiment in Italy based on the occurrence of strong (fore) shocks, Geophys. J. Int, 
225, 1192–120. doi: 10.1093/gji/ggaa592. 
 
Gulia, L., and P. Gasperini (2021). Contamination of Frequency–Magnitude Slope (b-Value) by 
Quarry Blasts: An Example for Italy, Seismol. Res. Lett. 92, 3538–3551, doi: 
10.1785/0220210080. 
 
 
Gulia, L., and S. Wiemer (2021). Comment on “Two Foreshock Sequences Post Gulia and Wiemer 
(2019)” by Kelian Dascher- Cousineau, Thorne Lay, and Emily E. Brodsky, Seismol. Res. Lett., 92, 
3251-3258, doi: 10.1785/0220200428 
 
Gulia, L., S. Wiemer, and G. Vannucci (2020). Pseudoprospective Evaluation of the Foreshock 
Traffic-Light System in Ridgecrest and Implications for Aftershock Hazard Assessment, Seismol. 
Res. Lett. 91, 2828–2842, doi: 10.1785/0220190307. 
 
In preparation 
 
Biondini, E., D. Rhoades, and P. Gasperini (2022). Application of the EEPAS seismic forecasting 
method to Italy. 

2. Chapter 2 - Analysis of the reliability of the magnitude-inde-
pendence assumption 

Spassiani & Marzocchi (2021) proposed to model the MFD of seismic events that nucleate in a 
confined area with an energy-dependent tapered Gutenberg–Richter (GR) relation, (TGRE). TGRE 
acknowledges the elastic rebound theory in the sense that the probability for another large event 
to nucleate in the same area within a short time interval has to be lower than according to the 
(tapered) GR relation. The validity and applicability of the TGRE model is demonstrated for the 
1992 M7.3 Landers sequence, California. As expected by TGRE, it was shown that the on-fault 
MFD differs from the off-fault MFD (lower corner magnitude), evidencing the magnitude independ-
ence assumption. The TGRE fits the magnitude–frequency distribution (MFD) of on-fault seismicity 
better than the tapered GR model. An ETAS model with TGRE could improve OEF, i.e., finding the 
highest probability for a large earthquake not where the previous large earthquake occurred.  
Herrmann & Marzocchi (2021) inspected the magnitude–frequency distribution (MFD) of high-
resolution catalogs at the example of the 2019 M7.1 Ridgecrest sequence, 2009 M6.3 L’Aquila 
Sequence, and of whole Southern California. They found that the MFD of small earthquakes in 
these catalogs does usually not comply with the exponential Gutenberg–Richter (GR) relation. In 
fact, when using this relation rigorously, high-resolution catalogs do not seem to offer a crucial 
benefit over ordinary catalogs. This impediment is mostly due to an improper mixing of different 
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magnitude types, spatiotemporally varying detection capabilities, or distorted data processing. 
Common methods to apply the GR relation do not detect these discrepancies. These findings are 
relevant for both producers of high-resolution catalogs and modelers that use MFDs of such cata-
logs. 
Herrmann et al. (2022) reanalyzed the 2016–2017 central Italy sequence using a high-resolution 
catalog and introduced an alternative perspective for studying MFD variability—using a spatiotem-
poral scale that considers the 3-D distribution of recorded seismicity. This approach is based on 
Piegari et al. (2022) of the same group: using a cluster analysis of a sequence using density-
based algorithms to spatially isolate the most seismogenic zones; temporal periods are defined 
by the occurrence time of the largest events. They demonstrate that this approach proves bene-
ficial in resolving the spatiotemporal variation of the MFD and b-value. For instance, they resolved 
what happened in the days before the largest event (Norcia) in its associated seismogenic zone. 
Rather than solely focusing on b-value estimates, they exploited more information from the MFD, 
e.g., by assessing and comparing its exponential-like part and reporting the b-value stability as 
function of Mc. They showed that the MFD behaves in a complex manner among the spatially 
isolated clusters throughout the sequence. Their findings reflect on the appropriate spatiotemporal 
scale to resolve the b-value and challenge existing approaches. 
Manganiello et al. (2022) re-examined foreshock activity in southern California to investigate the 
existence and main characteristics of foreshock sequences that cannot be explained by ETAS, i.e., 
anomalous foreshock sequences. In other words, they looked for new insights on the evidence 
against the cascade model. They performed different statistical tests and considered the potential 
influence of subjective choices, such as the method to identify mainshocks and their foreshocks. 
They found anomalous foreshock sequences mostly for mainshock magnitudes below 5.5. These 
anomalies preferentially occurred in zones of high heat flow, which were already known to host 
swarm-like seismicity. Outside these regions, the foreshocks generally behave as expected by 
ETAS. These findings will contribute to an improving earthquake forecasting (e.g., by stimulating 
the discrimination of swarm-like from ETAS-like sequences) and the understanding of earthquake 
nucleation processes (e.g., anomalous foreshock sequences are not indicating a pre-slip nuclea-
tion process, but swarm-like behavior driven by heat flow). 
 
Published papers: 
 
Herrmann, M., & Marzocchi, W. (2021). Inconsistencies and lurking pitfalls in the magnitude–

frequency distribution of high-resolution earthquake catalogs. Seismological Research Let-
ters, 92(2A), 909–922. https://doi.org/10.1785/0220200337. https://zenodo.org/rec-
ord/4428319 

Piegari, E., M. Herrmann, & W. Marzocchi (2022). 3-D spatial cluster analysis of seismic sequences 
through density-based algorithms. Geophysical Journal International 230(3). 2073–2088. 
https://doi.org/10.1093/gji/ggac160. https://zenodo.org/record/6671514 

Spassiani, I., & Marzocchi, W. (2021). An Energy-Dependent Earthquake Moment–Frequency Dis-
tribution. Bulletin of the Seismological Society of America, 111(2), 762–774. 
https://doi.org/10.1785/012020190. https://zenodo.org/record/5510040 

 
Accepted papers: 
 
Herrmann, M., E. Piegari, & W. Marzocchi (2022). b-value of what? Complex behavior of the mag-

nitude distribution during and within the 2016–2017 central Italy sequence. Nature Commu-
nication (accepted). Preprint: https://doi.org/10.21203/rs.3.rs-1210699/v1 

 
Submitted (under review) papers: 
 
Manganiello, E., M. Herrmann, & W. Marzocchi (2022). New physical implications from revisiting 

foreshock activity in southern California. Geophysical Research Letters. (submitted). Preprint: 
https://www.essoar.org/doi/10.1002/essoar.10509908.2 
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3. Chapter 3 - Search for additional explanatory variables in the 
triggering properties of earthquakes 

Systematic empirical studies to search for additional explanatory variables in the triggering prop-
erties of earthquakes were conducted. Obvious candidates include (i) surface heat flow, (ii) geo-
detic strain-rate, (iii) thickness of the seismogenic zone, (iv) lithology (inferred rigidity, rheology 
if available), (v) plate tectonic setting, (vi) inferred regional stress field, (vii) triggering suscepti-
bility, (viii) time since last major earthquake (on well-characterised faults), and some variables 
that can be measured during a seismic sequence such as (i) source focal mechanism, (ii) aseismic 
afterslip moment, (iii) stress drop, and (iv) ShakeMap footprint. Specifically, we will search for 
dependencies between these variables and various clustering properties including (i) size/tim-
ing/location of largest triggered event, (ii) triggering productivity, (iii) foreshock statistics, (iv) 
swarm-like behaviour. The research will benefit from advances in observational capabilities (-> 
2.4) and exploit computational statistics to uncover hidden relationships. 
In this regard, Bayliss et al. (2020) has developed a Bayesian framework to make inferences of 
the effect of the explanatory variables listed above on the Epidemic-Type Aftershock Sequence 
(ETAS) model parameters. This allows them to have a comprehensive representation of the un-
certainty by calculating a full posterior distribution for each quantity of interest. The novelty of 
their approach is to represent the ETAS model as a Latent Gaussian model (LGm). This allows 
them to use the Integrated Nested Laplace Approximation (INLA) methodology to obtain the pos-
terior distribution of the parameters. The INLA methodology is an alternative to MCMC techniques 
designed to handle large LGm’s having parameters with complex covariance structures, specifi-
cally, it has been used extensively to study the effect of spatially or temporally (or both) varying 
covariates on a phenomenon of interest. Applications of the INLA methodologies range from fi-
nance to biostatistics. This creates a theoretical framework to include covariates in the ETAS model 
and to compare models based on different combinations of those. Moreover, the INLA algorithm 
is deterministic which makes the result more reproducible than simulation based techniques such 
as MCMC. Finally, this theoretical framework is easily extendible to consider the parameters as 
spatially and/or temporally variable, by using Gaussian Markov Random Fields with the parame-
ters of the covariance function determined by the data. 
Probabilistic earthquake forecasts estimate the likelihood of future earthquakes within a specified 
time-space-magnitude window and are important because they inform planning of hazard mitiga-
tion activities on different timescales. The spatial component of such forecasts, expressed as seis-
micity models, generally rely upon some combination of past event locations and underlying fac-
tors which might affect spatial intensity, such as strain rate, fault location and slip rate or past 
seismicity. Bayliss et al. (2022) for the first time, extend previously reported spatial seismicity 
models, generated using the open source inlabru package, to time-independent earthquake fore-
casts using California as a case study. The inlabru approach allows the rapid evaluation of point 
process models which integrate different spatial datasets. they explore how well various candidate 
forecasts perform compared to observed activity over three contiguous five year time periods 
using the same training window for the seismicity data. In each case they compare models con-
structed from both full and declustered earthquake catalogues. In doing this, they compare the 
use of synthetic catalogue forecasts to the more widely-used grid-based approach of previous 
forecast testing experiments. The simulated-catalogue approach uses the full model posteriors to 
create Bayesian earthquake forecasts. They show that simulated-catalogue based forecasts per-
form better than the grid-based equivalents due to (a) their ability to capture more uncertainty in 
the model components and (b) the associated relaxation of the Poisson assumption in testing. 
They demonstrate that the inlabru models perform well overall over various time periods, and 
hence that independent data such as fault slip rates can improve forecasting power on the time 
scales examined. Together, these findings represent a significant improvement in earthquake 
forecasting is possible, though this has yet to be tested and proven in true prospective mode.  
Aseismic afterslip is postseismic fault sliding that may significantly redistribute crustal stresses 
and drive aftershock sequences. Afterslip is typically modeled through geodetic observations of 
surface deformation on a case-by-case basis, thus questions of how and why the afterslip moment 
varies between earthquakes remain largely unaddressed. Churchill et al. (2022) compiled 148 
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afterslip studies following 53 M 6.0–9.1 earthquakes, and formally analyzed a subset of 88 well-
constrained kinematic models. Afterslip and coseismic moments scale near-linearly, with a median 
Spearman's rank correlation coefficient (CC) of 0.91 after bootstrapping (95% range: 0.89–0.93). 
They inferred that afterslip area and average slip scale with coseismic moment as 𝑀!

"/$	and 𝑀!
%/$, 

respectively. The ratio of afterslip to coseismic moment (Mrel) varies from <1% to >300% (inter-
quartile range: 9%–32%). Mrel weakly correlates with M0 (CC: −0.21, attributed to a publication 
bias), rupture aspect ratio (CC: −0.31), and fault slip rate (CC: 0.26, treated as a proxy for fault 
maturity), indicating that these factors affect afterslip. Mrel does not correlate with mainshock dip, 
rake, or depth. Given the power-law decay of afterslip, studies that started earlier and spanned 
longer timescales to capture more afterslip are expected, but Mrel does not correlate with obser-
vation start time or duration. Because Mrel estimates for a single earthquake can vary by an order 
of magnitude, it is proposed that modeling uncertainty currently presents a challenge for system-
atic afterslip analysis. Standardizing modeling practices may improve model comparability, and 
eventually allow for predictive afterslip models that account for mainshock and fault zone factors 
to be incorporated into aftershock hazard models. 
Strong earthquakes cause aftershock sequences that are clustered in time according to a power 
decay law, and in space along their extended rupture, shaping a typically elongate pattern of 
aftershock locations. A widely used approach to model earthquake clustering, the Epidemic Type 
Aftershock Sequence (ETAS) model, shows three major biases. First, the conventional ETAS ap-
proach assumes isotropic spatial triggering, which stands in conflict with observations and geo- 
physical arguments for strong earthquakes. Second, the spatial kernel has unlimited extent, al-
lowing smaller events to exert disproportionate trigger potential over an unrealistically large area. 
Third, the ETAS model assumes complete event records and neglects inevitable short-term after-
shock incompleteness as a consequence of overlapping coda waves. These three aspects can sub-
stantially bias the parameter estimation and lead to underestimated cluster sizes. Grimm et al. 
(2022) combine the approach of Grimm et al. (Bull. Seismol. Soc. Am. 112, 474–493, doi: 
10.1785/0120210097), who introduced a generalized anisotropic and locally restricted spatial ker-
nel, with the ETAS-Incomplete (ETASI) time model of Hainzl (Bull. Seismol. Soc. Am. 112, 494–
507, doi: 10.1785/0120210146), to define an ETASI space-time model with flexible spatial kernel 
that solves the abovementioned shortcomings. We apply different model versions to a triad of 
forecasting experiments of the 2019 Ridgecrest sequence and evaluate the prediction quality with 
respect to cluster size, largest aftershock magnitude and spatial distribution. The new model pro-
vides the potential of more realistic simulations of on-going aftershock activity, e.g. allowing bet-
ter predictions of the probability and location of a strong, damaging aftershock, which might be 
beneficial for short term  
 
Published papers 
 
Bayliss, K., M. Naylor J. Illian & I.G. Main (2020). Data-driven optimization of seismicity models 

using diverse datasets: generation, evaluation and ranking using inlabru, J. Geophys. Res: 
Solid Earth, https://doi.org/10.1029/2020JB020226 

 
Churchill, R. M., Werner, M. J., Biggs, J., & Fagereng, Å. (2022). Afterslip Moment Scaling and 

Variability from a Global Compilation of Estimates, Journal of Geophysical Research: Solid 
Earth, e2021JB023897. https://doi.org/10.1029/2021JB023897. 

 
Grimm, C., Hainzl, S., Käser, M., Küchenhoff, H. (2022): Solving three major biases of the ETAS 

model to improve forecasts of the 2019 Ridgecrest sequence. - Stochastic Environmental 
Research and Risk Assessment. https://doi.org/10.1007/s00477-022-02221-2 

 
In press  
 
Bayliss, K., Naylor, M., Kamranzad, F. & I. Main (2022). Pseudo-prospective testing of 5-year 

earthquake forecasts for California using inlabru, Nat. Hazards Earth Syst. Sci. 
https://doi.org/10.5194/nhess-2021-403 
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S U M M A R Y
In a recent work, we computed the relative frequencies with which strong shocks
(4.0 ≤ Mw < 5.0), widely felt by the population were followed in the same area by po-
tentially destructive main shocks (Mw ≥ 5.0) in Italy. Assuming the stationarity of the seismic
release properties, such frequencies can be tentatively used to estimate the probabilities of
potentially destructive shocks after the occurrence of future strong shocks. This allows us to
set up an alarm-based forecasting hypothesis related to strong foreshocks occurrence. Such
hypothesis is tested retrospectively on the data of a homogenized seismic catalogue of the
Italian area against a purely random hypothesis that simply forecasts the target main shocks
proportionally to the space–time fraction occupied by the alarms. We compute the latter frac-
tion in two ways (i) as the ratio between the average time covered by the alarms in each area and
the total duration of the forecasting experiment (60 yr) and (ii) as the same ratio but weighted
by the past frequency of occurrence of earthquakes in each area. In both cases the overall
retrospective performance of our forecasting algorithm is definitely better than the random
case. Considering an alarm duration of three months, the algorithm retrospectively forecasts
more than 70 per cent of all shocks with Mw ≥ 5.5 occurred in Italy from 1960 to 2019 with
a total space–time fraction covered by the alarms of the order of 2 per cent. Considering the
same space–time coverage, the algorithm is also able to retrospectively forecasts more than
40 per cent of the first main shocks with Mw ≥ 5.5 of the seismic sequences occurred in the
same time interval. Given the good reliability of our results, the forecasting algorithm is set
and ready to be tested also prospectively, in parallel to other ongoing procedures operating on
the Italian territory.

Key words: Earthquake hazards; Earthquake interaction, forecasting, and prediction; Statis-
tical seismology.

I N T RO D U C T I O N

Even if the deterministic prediction of earthquakes is presently not
feasible and perhaps it will never be (Geller et al. 1997), several
methods of probabilistic operational forecasting have been pro-
posed in the last decades (see Jordan & Jones 2010 and Jordan
et al. 2011 for an overview). Many of such methods take advantage
of the well-known property of earthquakes to cluster in space and
time (Mulargia & Geller 2003; Kagan 2014) and in particular of the
possibility that relatively small shocks, occurring in advance (fore-
shocks) of destructive main shocks, might be used as precursory
signal.

Jones & Molnar (1976, 1979) first observed that the property of
worldwide strong earthquakes of being preceded by a few days or
weeks of smaller shocks could have been used to predict somehow

their occurrence. Jones (1984, 1985) noted that in California the
occurrence of a weak shock increased of several order of magnitude
the probability of occurrence of a main shock in the following hours
or days and Agnew & Jones (1991) and Jones (1994) computed the
probability of a major earthquake along the San Andreas fault in
California, given the occurrence of a potential foreshock nearby
the fault. The occurrence of foreshocks was then adopted as one of
possible precursor of large earthquakes by the Southern San An-
dreas Working Group (1991) and Reasenberg (1999a,b) estimated
the prospective frequency of potential foreshock being followed by
stronger earthquakes in California and worldwide.

In Italy, Caputo et al. (1977, 1983) analysed earthquakes’ swarms
as forerunners of strong earthquakes, Grandori et al. (1988) pro-
posed an alarm system based on the occurrence of a pair of fore-
shocks, Console et al. (1993) and Console & Murru (1996) studied
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the foreshock statistics and their possible relationship to earthquake
prediction and Di Luccio et al. (1997) and Console et al. (1999)
set up a forecasting hypothesis for the occurrence of earthquakes
conditioned by prior events.

More recently, Gasperini et al. (2016), by the retrospective anal-
ysis of a homogeneous seismic catalogue of the Italian region, com-
puted the relative frequencies with which strong shocks (defined
as 4.0 ≤ Mw < 5.0) were followed in the same area by potentially
destructive main shocks (defined as Mw ≥ 5.0, 5.5, 6.0). In partic-
ular, they found that just after strong shocks, the relative frequency
of potentially destructive main shocks in the same area increases
with respect to quiet periods by a factor up to about 100 000. Then,
as time goes by without any main shock occurring, such factor de-
creases logarithmically down to less than 10 for time windows of
months to years. Within one day after the occurrence of a strong
shock, the frequencies of main shocks with Mw ≥ 5.0 and ≥ 5.5
range from 5 per cent to 2 per cent while within one month they
range from 14 per cent to 6 per cent. Frequencies remain quite stable
for about one hour after the strong shock and then start to decrease
logarithmically at a rate of about 1 per cent for a doubling of the
time elapsed from the strong shock. The frequencies of large main
shocks (Mw ≥ 6.0) are generally lower than 1 per cent except from
about one month after a strong shock with 4.5 ≤ Mw < 5.0 when
they become of the order of 4 per cent, but they decrease well below
1 per cent about two or three months after the strong shock if the
main shock did not actually occur in the meantime. About 30 per
cent of main shocks have been preceded by strong shocks in the day
before, about 50 per cent one in the month before and about 60 per
cent in the year before.

All such evidences suggest us to formulate an alarm-based fore-
casting hypothesis related to the simple occurrence of strong shocks
in a given area. In this work, we first set up such hypothesis and
then optimize it by the retrospective analysis of the HOmogenized
instRUmental Seismic catalogue (HORUS) of the Italian area from
1960 to 2019 (Lolli et al. 2020) which is an improved and updated
version of the seismic catalogue used by Gasperini et al. (2016).

In our knowledge, this is the first alarm-based forecasting exper-
iments applied to the Italian region after the one by Grandori et al.
(1988) cited above and after Console et al. (2010) and Murru et al.
(2009) who converted to an alarm-based approach previous proba-
bilistic forecasting studies by Console & Murru (2001) and Console
et al. (2003, 2006). In fact, the latter studies, as well as others fore-
casting efforts in Italy (see Schorlemmer et al. 2010 and Marzocchi
et al. 2014 for an overview), mostly based on the Epidemic-Type Af-
tershock Sequence (ETAS) model (Kagan & Knopoff 1987; Ogata
1988), were developed to reproduce at best the general behaviour
of future seismicity, not to issue a warning of a possibly impending
damaging earthquake.

The present forecasting hypothesis will be possibly submitted
for prospective testing and validation to the testing facilities of
the Collaboratory Study of Earthquake Predictability (Jordan 2006;
Zechar et al. 2010).

S E T T I N G U P T H E F O R E C A S T I N G
H Y P O T H E S I S

We issue an alarm of duration �t within a circular area (CA) of
radius R every time a strong shock with Mmin ≤ M < Mmax occurs
inside the CA. As target events to be forecasted we consider all the
shock, with magnitude above a threshold Mm ≥ Mmax.

We must note that after the actual occurrence of a target shock, the
forecast of further target shocks in the same area and in the following
weeks or months is somehow favoured by the strong aftershocks of
the previous target event. Hence, we also verify the ability of our
method to forecast only the first target shock of each sequence.
We then consider also a declustered set of target shocks obtained
by eliminating those target shocks occurred within a distance D =
50 km and a time window of a year after another target shock of
the sequence, even if they are larger than the first target shock of
the sequence. This kind of declustering is somehow different with
respect to that adopted for example in seismic hazard assessment
(e.g. Gardner & Knopoff 1974; Reasenberg 1985) in which each
sequence is usually represented by the largest shock, even if it
is not the first one in the sequence. We choose the declustering
space and time windows based on our experience on past Italian
seismic sequences but we also checked visually that none possible
secondary main shock remains not declustered. Also note that the
chosen declustering windows approximately correspond to those
determined by the algorithm of Gardner & Knopoff (1974) for
M = 5.5.

As source areas we consider a regular tessellation of the Italian
territory made of partially overlapping CAs with fixed radius R.
Starting from an initial CA, centred at latitude 47◦ and longitude
7◦, we compute the centres of the neighbour CAs by moving with
steps D = R

√
2 both in longitude (from 7◦ to 19◦) and in latitude

(from 47◦ to 36◦) covering then the whole Italian area with partial
overlapping (Fig. 1).

Based on the results of our previous analysis (Gasperini et al.
2016), we choose a radius R = 30 km, as a good compromise
between the opposing demands of having short spatial resolution
and a sufficiently high number of earthquakes within each CA, so
obtaining a total of 695 partially overlapping CAs. However, as the
completeness of the seismic catalogue is poor in offshore areas,
we consider in our analysis only the CAs within which at least one
earthquake with Mw ≥ 4.0 occurred inland from 1600 to 1959 (so as
to be independent of the seismicity from 1960 to 2019 that will be
used for the retrospective testing and optimization of the forecasting
method), according to the CPTI15 catalogue (Rovida et al. 2016,
2020).

According to Gasperini et al. (2016), we consider as target shocks
the earthquakes with Mw ≥ 5.0, ≥ 5.5 and ≥ 6.0, which, in Italy,
usually cause moderate, heavy and very heavy damage to buildings
and none, a few and many victims respectively. Larger thresholds
cannot be investigated because only three shocks with Mw ≥ 6.5
(1976 Friuli with Mw = 6.5, 1980 Irpinia with Mw = 6.8 and 2016
Norcia with Mw = 6.6) occurred during the time interval covered
by our seismic catalogue.

We count a success if a target shock occurs during one or more
alarm time windows �t and within one or more CA. On the contrary
we count a missed forecast if a target shock occurs outside any
alarm window of any CA. According to Molchan (1990, 1991), we
compute the miss rate as

ν = N − h

N
(1)

where h is the number of target events successfully forecasted and
N is the total number of target events.

We also compute the total time duration dc of alarms as the union
of all alarm windows within each CA. This can also be computed
by multiplying the window length �t by the number n of issued
alarms and then subtracting the sum of time intersections between
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1194 P. Gasperini et al.

Figure 1. Tessellation of the Italian territory used for the retrospective forecast experiment. CA with R = 30 km within which at least one earthquake with
Mw ≥ 4.0 occurred inland from 1600 to 1959 according to the CPTI15 catalogue (Rovida et al. 2020).

alarm windows ∩ts

dc = ∪�t = n�t −
∑

∩ts (2)

The fraction of time occupied by alarms within each CA is then
computed as

τc = dc

T
(3)

where T is the total duration of the forecasting experiment.

Finally, the overall fraction of space-time occupied by alarms is
computed as the average of τc over all CAs

τu = 1

M

∑
τc (4)

where M is the number of CAs. Note that such definition of fraction
of space–time occupied by alarms is consistent with strong shocks
occurring in the overlapping region of two adjoining CAs because
in such case we sum the alarm fraction of time τc for both CAs.
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Table 1. Magnitudes of completeness of the CPTI15 catalogue (Rovida
et al. 2016, 2020).

Magnitude
threshold Mc

Time interval of
completeness �T (yr)

Mw ≥ 4.5 1880–1959 80
Mw ≥ 5.0 1880–1959 80
Mw ≥ 5.5 1780–1959 180
Mw ≥ 6.0 1620–1959 340

Following Shebalin et al. (2011), we also compute the fraction
of space–time occupied by alarms by weighting each alarm with
the long-term rate of earthquakes within each CA. We compute
such rate based on the data of the CPTI15 catalogue (Rovida et al.
2016, 2020) using different completeness thresholds Mc for dif-
ferent time intervals from 1620 to 1959 (Table 1). We count the
numbers of earthquakes N (Mc) above each magnitude threshold
Mc occurred within each CA and within the corresponding time
interval of completeness �T (Mc). Then we compute for each mag-
nitude threshold the expected rate λ (event yr−1) of earthquakes
with Mw ≥ 4.0, assuming the b-value of the frequency–magnitude
distribution (Gutenberg & Richter 1944) equal to 1 (Rovida et al.
2020):

λ = N (Mc)

�T (Mc)
10Mc−4.0 (5)

In each CA, we then compute the average λave of rates λ >

0 from different magnitude thresholds. For those CAs for which
such average frequency cannot be computed because there are no
earthquakes within the completeness time window of any magnitude
threshold, we assign the minimum rate computed overall.

Finally, the weighted fraction of space–time occupied by alarms
is computed from all CAs as

τw =
∑

λaveτc∑
λave

(6)

See the details of such computations for each CA in Table S1 of
the Supporting Information.

DATA S E T U S E D F O R T E S T I N G A N D
O P T I M I Z AT I O N

To test and optimize our algorithm, we apply it retrospectively to
the HORUS catalogue of Italian instrumental seismicity from 1960
to 2019 (Lolli et al. 2020). For the time interval from 1960 to 1980,
HORUS coincides with the data set prepared by Lolli et al. (2018)
and that can be downloaded from the electronic supplement of such
paper. For the period from 1981 to 2019, it is obtained by merging
various data sources and homogenizing the magnitudes to Mw as
described by Gasperini et al. (2012, 2013). The catalogue used here
is updated up to the end of 2019 but we have implemented an auto-
matic procedure able to continuously update such catalogue in near
real-time (with daily to hourly updates) through the downloading
of new data from online sources and the application of magnitude
conversions (Lolli et al. 2020). We provide the final catalogue on
the web (https://doi.org/10.13127/HORUS) for public dissemina-
tion and the possible prospective testing of the present and other
forecasting methods.

The magnitude completeness threshold for the period 1960–1980
has been assessed by Lolli et al. (2018) to be about 4.0 whereas,
according to Gasperini et al. (2013), it is definitely lower for the
successive time periods. Such thresholds might be definitely larger

in offshore areas owing to the large distances from the closest seis-
mic stations, which are usually located on land (excepting for a few
instruments deployed on the sea bottom). This is the reason why we
only consider earthquakes with Mw ≥ 4.0 occurred within the 190
CAs containing one inland earthquake at least. As our interest is to
forecast earthquakes that potentially threaten lives and goods, we
also limit the analysis to shocks shallower than 50 km. We show in
Fig. S1 of Supporting Information the spatial distribution of inland
earthquakes from the HORUS catalogue (Lolli et al. 2020) with
Mw ≥ 4.0 and depth < 50 km used for testing and optimization and
in Fig. S2 in the Supporting Information the time distribution of
magnitudes of all inland earthquakes with depth < 50 km.

The catalogue provides uncertainties for all magnitude estimates,
ranging from less than 0.1 (for Mw estimated by moment tensor
inversion) to about 0.5 (for Mw proxies from body wave magnitude
mb observed by a few stations). In general, magnitude and location
errors have the effect to increase the randomness of the catalogue
and then to penalize skilled forecasting methods with respect to
unskilled ones.

Owing to the Gutenberg Richter (1944) law, errors tend on av-
erage to overestimate all magnitudes because there are more earth-
quakes below a given threshold which can be overestimated than
earthquakes above the same threshold which can be underestimated.
The larger the error the larger the overestimation.

On the other hand, magnitude errors are generally larger for
small earthquakes because the latter are observed by less stations
and because accurate method of magnitude determination, like mo-
ment tensor inversion, cannot be applied to them. This means that
in general small earthquakes are overestimated more than larger
ones and then that foreshocks are overestimated more than target
shocks.

One possible consequence in the present case is that errors in
magnitude might improperly increase the number of alarms and then
the space–time fraction occupied by alarms, particularly in earlier
times when the coverage of seismic networks was coarser, so that to
slightly underestimate the real skill of the method. Conversely the
number of target shocks should not be affected much by magnitude
errors because in HORUS catalogue the most (about 80 per cent) of
Mw ≥ 5.0 are accurately computed by moment tensor inversions.

T E S T I N G A N D O P T I M I Z I N G T H E
F O R E C A S T I N G H Y P O T H E S I S

We here follow the approach proposed by Zechar & Jordan (2008,
2010) based on the so-called ‘Molchan error diagram’ (Molchan
1990, 1991; Molchan & Kagan 1992). The latter consists of a plot
(e.g. Fig. 2) of the miss rate ν (eq. 1) as a function of the fractions
of space–time occupied by alarms τ (τu of eq. 4 or τw of eq. 6). For
a paradoxical forecasting method not issuing any alarm, the space–
time occupied by alarms is 0 and no target events can be forecasted
(all target event are missed) then it is represented by the point
(τ, ν) = (0, 100 per cent) at the upper left corner of the Molchan
diagram. On the other hand, for a forecasting method issuing an
alarm at any time and in any place, so occupying the entire space-
time volume, no target events are missed and then the forecasting
method is represented by the point (τ, ν) = (100 per cent, 0) at the
lower right corner of the diagram. The points on the diagonal line
connecting such two points (e.g. the black continuous line in Fig. 2),
with equation

ν = 1 − τ (7)
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1196 P. Gasperini et al.

Figure 2. Molchan diagram for all target shocks with Mw ≥ 5.5 (not-declustered). Red and dark blue lines indicate the forecasting performance of foreshocks
with 4.4 ≤ Mw < 4.8 for unweighted (τu ) and weighted (τw) fractions of space–time occupied by alarms respectively (see the text). The black continuous line
indicates a purely random forecasting method that separates skilled (below the line) from unskilled (above) forecasting methods. The light blue, violet and
green lines indicate the confidence limits for α = 50 per cent, 5 per cent and 1 per cent, respectively. The black dashed lines indicate probability gains G = 2,
5, 10, 20 and 40.

indicate the expected performance of a purely random forecasting
method that simply forecasts target events proportionally to the
space–time fraction occupied by the alarms.

On the diagonal line, the ratio between the success rate and the
space-time fraction

G = 1 − ν

τ
(8)

is 1 for any τ , while for a skilled forecasting method, located below
the line, G > 1 represents the ‘probability gain’ factor with respect
to the random case.

Following Zechar & Jordan (2008), τ (τu or τw) can be assumed
as the probability of forecasting a target events by chance and then
can be used to measure the performance of a forecasting method
under the reasonable assumption that the probability of having ex-
actly h successful forecasts over N targets is given by the binomial
probability function

B (h|Nτ ) =
(

N
h

)
(τ )h(1 − τ )N−h (9)

Then, the cumulative probability of having by chance h or more
successful forecasts is

α =
N∑

n=h

B (n|Nτ ) = 1 −
h−1∑
n=0

B (n|Nτ ) (10)

Such statistic allows to measure the skill of a forecasting methods,
given the miss rate ν and the fraction of space–time occupied by
alarms τ . In particular, the lower the statistic the higher the skill.
Moreover, by inverting eq. (10), we can compute the expected miss
rate ν at a given τ , for a hypothetical forecasting method with given
probability α, and then to plot confidence limits on the Molchan
diagram (e.g. the blue, violet and green lines in Fig. 2).

This statistic can be used to validate a forecasting method using a
prospective data set (collected after the final fixing of the forecast-
ing hypothesis) but even to optimize the forecasting hypothesis by
searching the values of the parameters of the forecasting algorithm
(if any) for which the statistic is minimum, by using a retrospective
data set.

A given forecasting method with fixed parameter values is repre-
sented by a single point (τ, ν) on the Molchan diagram. However,
one can even consider curves (Molchan trajectories) connecting dif-
ferent points referred to the same general forecasting approach but
obtained by varying one of the free parameters of the forecasting
algorithm. In our case, we can vary the alarm time window �t from
0 to the total duration T of the experiment. In this way, we span the
total space–time occupied by the alarms and correspondingly the
number of successful forecasts, which increase with increasing �t .

In the light of such definition, the diagonal line in the Molchan
diagram can be seen as the Molchan trajectory of a purely random
forecasting method. If a forecasting method performs better than
the random one, its trajectory mainly lies in the lower left half of
the Molchan diagram below the random line.

Zechar & Jordan (2008, 2010) proposed to use as a measure of the
performance of an alarm-based forecasting method the integral of
the success rate function 1 − ν f (τ ) normalized to the alarm space–
time coverage τ

a f (τ ) = 1

τ

τ∫
0

[
1 − ν f (t)

]
dt (11)

As the integral corresponds to the area above the Molchan random
trajectory, the statistic was named area skill (AS) score. The AS
score is normalized so that its value ranges between 0 and 1: the
larger the statistic the better the performance.

The expected value of the AS score for a purely random method
can be derived by substituting the eq. (7) of the random line ν f (t) =
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1 − t in eq. (11). This gives

〈a f (τ )〉 = 1

τ

τ∫
0

[1 − (1 − t)] dt = 1

τ

τ 2

2
= τ

2
(12)

Such expectance function is represented in a plot as a function of
τ by a straight line connecting the axes origin (0,0) with the point
(100 per cent, 50 per cent) (e.g. the black line in Fig. 3). In such
plot, the skilled forecasting methods lie above such random line.

Zechar & Jordan (2008, 2010) explored the AS score distri-
bution and found that, for a continuous alarm function, the AS
score at τ = 1 is asymptotically Gaussian with a mean of 1/2 and
a variance of 1/(12 N). They also found that the kurtosis excess is
-6/(5 N) and hence, for N of the order of a dozen at least, the Gaus-
sian approximation provides a good estimate of confidence bounds.
Finally, they argued that even if the AS score can be computed for
any τ , the power of the test tends to increase with increasing τ and
therefore it is the best to use a f (τ = 1) for hypothesis testing.

R E S U LT S O F R E T RO S P E C T I V E
T E S T I N G

In Fig. 2, we show the Molchan trajectories for all target shocks
(35) with Mw ≥ 5.5 (not-declustered) preceded by strong shocks
with 4.4 ≤ Mw < 4.8, by varying �t from a width of a few seconds
to the total duration T = 60 yr of the catalogue. Red and dark blue
lines refer to the unweighted (τu) and weighted (τw) fractions of
space–time occupied by alarms, respectively (see in Table S2 in the
Supporting Information the numerical values of plotted curves).

The adopted foreshock Mw range (Mw = 4.6 ± 0.2) was chosen
after a comparative analysis of the relative performance of various
ranges with lower and upper magnitude bounds varying from the
completeness threshold of the catalogue (Mw = 4.0) to the minimum
magnitude of target shocks (Mw = 5.0). Such analysis was aimed at
maximizing the overall AS score and at the same time minimizing
the total number of alarms (Fig. 4).

Both the red and dark blue lines in Fig. 1 lie well below the
α = 1 per cent confidence curve (green) for all explored �t . All
the target shocks are successfully forecasted (ν = 0) for �t =
20 yr (corresponding to τu = 32 per cent and τw = 51 per cent)
or larger. For �t = 1 yr, about 83 per cent of target shocks (29)
are successfully forecasted, with space–time coverages τu = 3.3
per cent and τw = 6.3 per cent. 40 per cent of target shocks (14)
are forecasted with �t = 1 d for which τu = 0.01 per cent and
τw = 0.03 per cent. The AS diagram in Fig. 3 (see Table S2 in
the Supporting Information for numerical values) confirms such
good performance with the scores of the forecasting method (red
and dark blue lines) well above the random expectation (black) and
the 1 per cent confidence line (green) for any �t . The overall AS
scores a f (τu = 1) = 0.96 ± 0.05 and a f ( τw = 1) = 0.94 ± 0.05,
based on the Student’s t-test, are significantly larger than the
expectance of a random method (0.5) with significance level
(s.l.) �0.01.

As noted above the aftershocks produced by the first target shocks
of seismic sequences may significantly contribute to forecast sub-
sequent target shocks with Mw ≥ 5.5 within the same sequence. We
then proceed to analyse in the same way the declustered set of tar-
get shocks with Mw ≥ 5.5 obtained by discarding all target shocks
occurred within a spatial distance R = 50 km and a time window
of a year after the first and all subsequent Mw ≥ 5.5 shocks of the
sequence. This reduces the number of considered target shocks with
Mw ≥ 5.5 from 35 to 14.

In Figs 5 and 6, we report the same plots as in Figs 2 and 3
but for the (declustered) set of only the first target shocks with
Mw ≥ 5.5 of each sequence (see Table S3 in the Supporting Infor-
mation for numerical values). The performance is worse than for
the not-declustered set but remains well below the random line and
the α = 1 per cent confidence curve in the Molchan diagram of
Fig. 5 and also well above the α = 1 per cent confidence line of
AS diagram of Fig. 6. Even in this case all 14 target shocks are
successfully forecasted with �t = 20 yr or larger. For �t = 1 yr,
64 per cent of target shocks (9) are forecasted and 29 per cent (4)
for �t = 1 d. The overall AS score a f ( τu = 1) = 0.93 ± 0.08 and
a f ( τw = 1) = 0.87 ± 0.08 are lower than for the not-declustered
set but anyhow they are significantly larger than the expectance (0.5)
of a random method with s.l. �0.01.

In Figs S3–S6 of Supporting Information, we report the same
plots of Figs 2, 3, 5 and 6 for target shocks with Mw ≥ 5.0 (nu-
merical values in Tables S4 and S5, Supporting Information). The
performance is definitely worse than for Mw ≥ 5.5, but still better
than the 1 per cent confidence limit. In particular, even for �t = 60
yr, only 89 over 98 (91 per cent) target shocks for the not-declustered
set and only 36 over 44 (82 per cent) for the declustered set are suc-
cessfully forecasted. The reason is that even when �t is equal to
the total duration of the catalogue, in some CAs there remains a
fraction of time (before the first strong shock) without any strong
shock and then without any alarm. Actually, the maximum fraction
of space–time occupied by alarms (τu) is only about 44 per cent of
the total space–time and nine target shocks with Mw ≥ 5.0 occurred
in the remaining 56 per cent. Here, the last part of the Molchan
trajectories, consisting of a linear decrease from the last point de-
fined by the algorithm (τu = 44 per cent and τw = 62 per cent with
ν = 9 per cent for not-declustered and 18 per cent for declustered)
to the lower left corner (τ = 100 per cent, ν = 0), can be interpreted
as the application to the remaining earthquakes, not predicted by
any foreshock, of a purely random forecasting method with success
rate proportional to the fraction of the remaining space–time region
not covered by our forecasting algorithm.

The overall AS scores are a f ( τu = 1) = 0.89 ± 0.03 and
a f ( τw = 1) = 0.85 ± 0.03 for the not-declustered set and
a f (τu = 1) = 0.78 ± 0.04 and a f ( τw = 1) = 0.70 ± 0.04 for
the declustered set. In all cases they are significantly larger than the
expectance (0.5) of a random method with s.l. �0.01.

In Figs S7–S10 of the Supporting Information, we also report
the plots for targets with Mw ≥ 6.0 (see numerical values in Tables
S6 and S7, Supporting Information). The performance is similar
to that for Mw ≥ 5.5 but as the number of target events is smaller
(10 not-declustered and 7 declustered), the power of the tests and
the reliability of possible inferences are relatively poorer. This is
actually reflected by the fact that the confidence limits in this case
are relatively close to the Molchan and AS trajectories.

All not-declustered targets are successfully forecasted with �t =
20 yr, 80 per cent with �t =1 yr and 50 per cent with �t =1 d. For
declustered targets, the corresponding forecasting rates are 100 per
cent, 71 per cent and 43 per cent respectively. The overall AS scores
are a f ( τu = 1) = 0.95 ± 0.09 and a f ( τw = 1) = 0.91 ± 0.09 for
not-declustered and a f ( τu = 1) = 0.93 ± 0.11 and a f ( τw = 1) =
0.87 ± 0.11 for declustered. In all cases, they are significantly larger
than the expectance (0.5) of a random method with s.l.�0.01.

One question that may come to mind when looking at the results of
such space–time analysis is how much of the observed forecasting
performance is due to spatial clustering and how much to time
clustering. In order to try to answer such question, we made some
further computations in which the time clustering is eliminated by
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Figure 3. AS score diagram for all target shocks with Mw ≥ 5.5 (not-declustered). Red and dark blue lines indicate the forecasting performance of foreshocks
with 4.4 ≤ Mw < 4.8 for unweighted (τu ) and weighted (τw) fractions of space–time occupied by alarms, respectively (see the text). The black continuous line
indicates the performance of a purely random forecasting method that separates skilled (above the line) from unskilled (below) forecasting methods. The light
blue, violet and green lines indicate the confidence limits for α = 50 per cent, 5 per cent and 1 per cent, respectively.

Figure 4. AS score computed for declustered targets with Mw ≥ 5.5, using unweighted (red line) and weighted (blue) fractions of space–time occupied by
alarms, and total number of alarms (grey bars) as a function of the foreshock magnitude range. The arrows indicate the range Mw = 4.6 ± 0.2, chosen as best
compromise between high AS score and low number of alarms.

assuming in each CA a permanent alarm for the entire duration of
the forecasting experiment (T = 60 yr). We computed the time-
independent Molchan and AS score trajectories by adding step by
step one CA at a time, starting from the CA with highest weight
(highest long-term seismic activity) and then going on, up to add all
CAs. At each step, the unweighted and weighted fractions of space
occupied by alarms are computed by simply taking τc = 1 in eqs

(4) and (6), respectively, for the included CAs and τc = 0 for the
not included CAs.

The results of such time-independent analysis for declustered
(first) target shocks with Mw ≥ 5.5 is shown in Figs 7 and 8. Even
if they are not fully comparable with the time-dependent analysis
of Figs 5 and 6 because the trajectories depend on the adopted
ordering of the CAs, from the most to the least active, we can note
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Figure 5. Same as Fig. 2 for declustered (first) target shocks with Mw ≥ 5.5.

Figure 6. Same as Fig. 3 for declustered (first) target shocks with Mw ≥ 5.5.

that the skill of time-independent analysis appears definitely lower,
particularly at small τ and for the weighted trajectories (blue lines).
This can be easily explained by the higher time clustering at short
times (and then at small τ ) and by the fact that the weights based
on the long-term seismic activity penalize more the CAs where the
target shocks actually occurred in the last 60 yr.

The results for declustered (first) target shocks with Mw ≥ 5.0 and
≥ 6.0 are reported in Figs S11–S14 of Supporting Information. For
Mw ≥ 5.0, the comparison of Figs S11 and S12 in the Supporting
Information with the time-dependent analysis of Figs S5 and S6

in the Supporting Information is similar to the case for Mw ≥ 5.5
described before. For Mw ≥ 6.0, the comparison of Figs S13 and
S14 in the Supporting Information with the time-dependent analysis
of Figs S9 and S10 in the Supporting Information, apart for small τ ,
apparently indicates an overall higher skill for the time-independent
analysis with respect to the time-dependent one. This is due to the
fact that for Mw ≥ 6.0 all declustered target shocks occurred in
CAs with very high long-term seismic activity and that, as noted
above, time-independent and time-dependent statistics are not fully
comparable between them.
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Figure 7. Same as Fig. 2 for time-independent analysis of declustered (first) target shocks with Mw ≥ 5.5.

Figure 8. Same as Fig. 3 for time-independent analysis of declustered (first) target shocks with Mw ≥ 5.5.

O P T I M I Z AT I O N O F T H E F O R E C A S T I N G
A L G O R I T H M

For a practical application of the forecasting method, it might
be useful to determine the values of the algorithm parameter �t
for which the forecasting method is more efficient and useful for
risk mitigation. To accomplish this purpose, we analyse the be-
haviour of some statistics that depend on the alarm time window
�t .

In Fig. 9 we report, for declustered targets and weighted fraction
of space–time occupied by alarms (τw), the binomial probability
(eq. 9), that is the probability that the observed number of successful
forecasts is obtained by chance, as a function of �t . The lower

the probability the higher the strength of the forecast. In general,
probabilities are relatively low within a wide range going from one
day to some years. For Mw ≥ 5.0 (red line), very low probabilities
are observed around �t = 2 ÷ 10 d. For Mw ≥ 5.5 (blue line) and
Mw ≥ 6.0 (green line) the minimum probabilities are larger than the
ones for Mw ≥ 5.0, and they remain relatively low from a few hours
to a few months. Within such ranges, the forecasting ability of our
method reaches its higher efficiency.

The behaviour of the probability gain G (eq. 8) as a function �t
(Fig. 10) shows, for all the three magnitude thresholds, monotoni-
cally descending trends from more than 100 000 at very short �t
(less than a minute) to slightly more than 1 at very long �t (tens
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Figure 9. Binomial probability density for declustered (first) target shocks and weighted fraction of space–time occupied by alarms for different magnitude
thresholds (see inset) as a function of the alarm duration �t .

Figure 10. Probability gain for declustered (first) target shocks and weighted fraction of space–time occupied by alarms for different magnitude thresholds
(see inset) as a function of the alarm duration �t .

of years). Such curves also show relatively milder slopes in corre-
spondence of steep decreases of binomial probabilities in Fig. 9 (i.e.
around 0.001 d and a few days).

In Fig. 11, we show the miss rate ν as a function of �t . In general,
it decreases with increasing �t . The (negative) trends—with respect
to log10�t—are in between the −5 per cent and −10 per cent per

decade, for �t ranging from a few seconds to about 1 yr. Then
they start to decrease more rapidly (about −20 per cent per decade)
reaching 0 for Mw ≥ 5.5 and ≥ 6.0 and 19 per cent for Mw ≥ 5.0 at
very large �t .

The behaviour of the same statistic for the full set of target events
(not-declustered) is reported in Figs S15–S17 of the Supporting
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Figure 11. Miss rate for declustered (first) target shocks and different magnitude thresholds (see inset) as a function of the alarm duration �t .

Information. It is similar to those of the declustered set but the
binomial probabilities are lower, the probability gains are higher
and the miss rates decrease more rapidly with �t .

Another aspect to be considered for the practical application of
the forecasting method is the dependence on �t of the fractions
of space–time occupied by alarms τu and τw (Fig. 12). A long
alarm interval �t (with a corresponding long fraction of space–time
occupied by alarms τ ) allows to forecast more target earthquakes but
at the same time it has relatively lower probabilities of occurrence
than a shorter �t . Furthermore, a longer duration of alarms would
impact more with life activities of the population in the involved
area. Even if any decision on the possible practical application in real
situations would eventually require a careful evaluation by decision
makers even considering a cost-benefits analysis (e.g. van Stiphout
et al. 2010; Hermann et al. 2016), we examine here as an example
the choice of �t = 3 months (0.25 yr). This choice, in most cases,
results in a fairly trade-off between a good efficiency and a narrow
space–time fraction covered by alarms τ ≈ 2.

We can see in Table 2 that in this case the method is able to
retrospectively forecast more than 50 per cent of not-declustered
target shocks with Mw ≥ 5.0 and more than 70 per cent of those
with Mw ≥ 5.5 and ≥ 6.0. We also report in Table 2 the statistic of
the numbers of successful alarms with respect to the total number of
alarms indicating higher rates for target with Mw ≥ 5.0. About one-
fifth of alarms actually forecast an earthquake, while the fraction of
successful alarms definitely decreases for larger targets and further
decreases for declustered sets down to about 1 per cent. Note that
several alarm time windows are actually overlapped and then the
total duration of alarms is shorter than the simple sum of alarm
windows (eq. 2).

The performance of the method is definitely worse for the first
target shocks (declustered set) but it improves by increasing the
magnitude of target shocks. Actually, 4 over 7 first target shocks with
Mw ≥ 6.0 over the last 60 yr in Italy are retrospectively forecasted
in this way.

We tested the stability with time of the forecasting performance
by subdividing the seismic catalog in two equal parts of 30 yr:

before and after 1990 january 01. The same computations of Ta-
ble 2 for �t = 3 months for intervals 1960–1989 and 1990–2019
are reported in Tables 3 and 4 respectively. The rates of suc-
cessfully forecasted target shocks (declustered or not) are similar
in the two periods whereas the space–time fraction occupied by
alarms is definitely lower in the most recent period, consistently
with the higher ratios between successful and total alarms. We
could argue that smaller magnitude errors in most recent times,
owing to the continuous improvement of the Italian seismic net-
work, reduce the amount of false alarms and then increase the ob-
served skill of the forecasting method with respect to the previous
period.

In Tables 5 and 6, we report the lists of retrospective forecast
of the first (declustered) target shocks with Mw ≥ 5.5 and ≥ 6.0,
respectively, occurred in Italy from 1960 to 2019 (also see the results
for the declustered first shocks with Mw ≥ 5.0 in Table S8 in the
Supporting Information and the results for not-declustered targets
with Mw ≥ 5.0, 5.5 and 6.0 in Tables S9–S11, respectively, of the
Supporting Information).

We can note that for two target shocks (1976 Friuli and 1990 Po-
tentino) the forecast could have hardly been used by civil protection
services to adopt safety countermeasures because the forecasting
strong shocks occurred too shortly before the main shock (67 and
13 s, respectively). In other cases, the time delay between the fore-
casting shock and the main shock (going from a couple of hours to
a few weeks) would have been sufficient to take some countermea-
sures.

We could note that a foreshock did actually occur a couple of
days before the first main shock of 2012 May 20 (Mw = 6.1)
in the area of Pianura Emiliana but its magnitude (Mw = 4.2)
was only slightly below the lower threshold of Mw = 4.4 we
adopted. The retrospective ability to predict Mw ≥ 6.0 earth-
quakes might have been improved then by slightly reducing such
lower threshold but at a cost of a general reduction of the perfor-
mance of the algorithm, because of the increment of the num-
ber of alarms and of the fraction of space–time covered by
alarms.
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Figure 12. Unweighted (red) and weighted (dark blue) fraction of space–time occupied by alarms as a function of the alarm duration �t .

Table 2. Retrospective forecasting performance of the algorithm for �t = 3 months.

Target magnitude ≥5.0 ≥5.5 ≥6.0
τu (per
cent)

τw (per
cent)

Not-declustered
Forecasted/total shocks 55/98 56 per cent 26/35 74 per cent 7/10 70 per cent 0.9 1.9
Successful/total alarms 115/617 18.6 per

cent
72/617 11.7 per

cent
30/617 4.9 per

cent
0.9 1.9

Declustered
Forecasted/total shocks 8/44 18 per cent 6/14 43 per cent 4/7 57 per cent 0.9 1.9
Successful/total alarms 13/617 2.1 per

cent
9/617 1.5 per

cent
8/617 1.3 per

cent
0.9 1.9

Table 3. Same as Table 2 for the time interval 1960–1989.

Target magnitude ≥5.0 ≥5.5 ≥6.0
τu (per
cent)

τw (per
cent)

Not-declustered
Forecasted/total shocks 21/45 47 per cent 11/15 73 per cent 3/4 75 per cent 1.0 2.1
Successful/total alarms 45/336 12.9 per

cent
22/336 6.6 per

cent
9/336 2.7 per

cent
1.0 2.1

Declustered
Forecasted/total shocks 3/25 12 per cent 3/7 43 per cent 2/3 67 per cent 1.0 2.1
Successful/total alarms 5/336 1.5 per

cent
5/336 1.5 per

cent
3/336 0.89 per

cent
1.0 2.1

C O N C LU S I O N S

We analysed a simple algorithm to forecast shallow (depth < 50 km)
main shocks (Mw ≥ 5.0, 5.5 and 6.0) that threaten the life and the
goods of the population living on the Italian mainland territory,
based on the previous occurrence within CA of 30 km of radius
of widely felt strong shocks (4.4 ≤ Mw < 4.8) not particularly
harmful in themselves. Based on a retrospective analysis of the
HORUS seismic catalogue of Italy from 1960 to 2019 (Lolli et al.
2020) this method retrospectively forecast the majority of damaging

earthquakes occurred in Italy in the past 60 yr by issuing alarms
covering only a small fraction of the space–time coverage.

We estimated such fraction even considering the different levels
of seismic activity in different areas of Italy by weighting more
the alarm times in CA where the average seismicity rate, computed
from the CPTI15 seismic catalogue (Rovida et al. 2016, 2020) from
1600 to 1959, is higher.

The retrospective testing using the Molchan diagram (Molchan
1990, 1991; Molchan & Kagan 1992) and the AS score (Zechar &
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Table 4. Same as Table 2 for the time interval 1990–2019.

Target magnitude ≥5.0 ≥5.5 ≥6.0
τu (per
cent)

τw (per
cent)

Not-declustered
Forecasted/total shocks 34/53 64 per cent 15/20 75 per cent 4/6 67 per cent 0.4 0.7
Successful/total alarms 70/281 24.9 per

cent
50/281 17.8 per

cent
21/281 7.5 per

cent
0.4 0.7

Declustered
Forecasted/total shocks 5/19 26 per cent 3/7 43 per cent 2/4 50 per cent 0.4 0.7
Successful/total alarms 8/281 3.5 per

cent
4/281 1.4 per

cent
5/281 1.8 per

cent
0.4 0.7

Table 5. Results of retrospective forecast of first main shocks (declustered targets) with Mw ≥ 5.5 in Italy from 1960 to 2019, using
�t = 3 months (0.25 yr).

Year Month Day Lat Lon Mw ta (d) Epicentral area

1962 8 21 41.233 14.933 5.7 0.093 2.22 h Irpinia
1968 1 15 37.700 13.100 5.7 0.425 10.2 h Valle del Belice
1976 5 6 46.250 13.250 6.5 7.8 × 10−4 67 s Friuli
1979 9 19 42.717 12.950 5.8 Missed Valnerina
1980 11 23 40.800 15.367 6.8 Missed Irpinia-Basilicata
1984 4 29 43.204 12.585 5.6 Missed Umbria settentrionale
1984 5 7 41.666 13.820 5.9 Missed Monti della Meta
1990 5 5 40.650 15.882 5.8 1.5 × 10−4 13 s Potentino
1997 9 26 43.023 12.891 5.7 22.1 Appennino umbro-marchigiano
1998 9 9 40.060 15.949 5.5 Missed Appennino lucano
2002 10 31 41.717 14.893 5.7 Missed Molise
2009 4 6 42.342 13.380 6.3 6.5 Aquilano
2012 5 20 44.896 11.264 6.1 Missed Pianura Emiliana
2016 8 24 42.698 13.234 6.2 Missed Monti della Laga

Notes: ta is the maximum time advance of the foreshock with respect to the main shock. ‘Missed’ indicates that the target shock was
not forecasted (in such cases all entries are in italics). Epicentral area identifiers are taken from the CPTI15 catalogue (Rovida et al.
2016, 2020).

Table 6. Same as Table 2 for first main shocks with Mw ≥ 6.0.

Year Month Day Lat Lon Mw ta (d) Epicentral area

1962 8 21 41.233 14.933 6.2 0.100 2.40 h Irpinia
1976 5 6 46.250 13.250 6.5 7.8 × 10−4 67 s Friuli
1980 11 23 40.800 15.367 6.8 Missed Irpinia-Basilicata
1997 9 26 43.015 12.854 6.0 22.5 Appennino umbro-marchigiano
2009 4 6 42.342 13.380 6.3 6.5 Aquilano
2012 5 20 44.896 11.264 6.1 Missed Pianura Emiliana
2016 8 24 42.698 13.234 6.2 Missed Monti della Laga

Jordan 2008) methods indicates that such approach clearly overper-
forms a purely random method with high or very high confidence,
depending on the target shock magnitude threshold.

As the secondary main shocks during seismic sequences are defi-
nitely easier to be forecasted by this method because the aftershocks
of the first main shock usually generate alarms at weakly (if not
daily) rate, we also tested the ability of our approach to predict only
the first main shock of each sequence. We found that the forecasting
ability remains high even if being lower than that considering all
main shocks.

Even if the true verification of the efficiency of the method will
only be made on a prospective data set, we believe that such sim-
ple forecasting algorithm could be useful, like other operational
forecasting approaches presently considered by the Italian Civil
Protection Department, for planning preparation measures in the
field (e.g. Marzocchi et al. 2014).

The latter approaches are mainly based on the ETAS model (Ka-
gan & Knopoff 1987; Ogata 1988) and, as well as that of this work,
showed to retrospectively forecast the evolution of Italian seismic-
ity better than an inhomogeneous random process with spatial rates
corresponding to past seismicity. On the other hand, Marzocchi &
Zhuang (2011) showed that ETAS models is able to describe quite
well even the observed foreshock activity. However, a comparison
of the relative efficiency of our approach with ETAS models and
even with other forecasting approaches (like e.g. the EEPAS method
(Rhoades & Evison 2004) would require that the probabilistic for-
mulation of the latter methods is adapted to the alarm-based one
(e.g. by selecting a particular probability thresholds above which
to declare an alarm). However, such adaptation is not trivial and
hence, the question on which of the different approaches is better
in predicting future damaging earthquakes remains not answered
presently and has to be deferred to future papers comparing all
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methods in an alarm-based context by using, for example, the ap-
proach proposed by Shebalin et al. (2014).

One advantage of the present forecasting approach is that it is easy
to implement and communicate because it does not require any other
scientific analysis than the correct determination of the location and
of the magnitude of the precursory shock. In principle every person
could be informed very quickly by a notification sent by one of the
already available mobile Apps which provide near real-time access
to the INGV online earthquake list (http://terremoti.ingv.it/en#).
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. Spatial distribution of inland earthquakes from the
HORUS catalogue (Lolli et al. 2020) with Mw ≥ 4.0 and
depth < 50 km used for testing and optimization. Black dots in-
dicate 4.0 ≤ Mw < 5.0, green dots 5.0 ≤ Mw < 5.5, blue dots
5.5 ≤ Mw < 6.0 and red dots Mw ≥ 6.0.
Figure S2. Time distribution of magnitudes of inland earth-
quakes km from the HORUS catalogue (Lolli et al. 2020) with
depth < 50 km used for testing and optimization. Black dots indi-
cate Mw < 5.0, green dots 5.0 ≤ Mw < 5.5, blue dots 5.5 ≤ Mw < 6.0
and red dots Mw ≥ 6.0.
Figure S3. Molchan diagram for all target shocks with Mw ≥ 5.0
(not-declustered). Red and dark blue lines indicate the forecasting
performance of foreshocks with 4.4 ≤ Mw < 4.8 for unweighted
(τu) and weighted (τw) fractions of space–time occupied by alarms
respectively (see the main text). The black continuous line indi-
cates the performance of a purely random forecasting method that
separates skilled (below the line) from unskilled (above) forecast-
ing methods. The light blue, violet and green lines indicate the
confidence limits for α =50 per cent, 5 per cent and 1 per cent, re-
spectively. The black dashed lines indicate probability gains G = 2,
5, 10, 20 and 40.
Figure S4. AS score diagram for all target shocks with Mw ≥ 5.0
(not-declustered). Red and dark blue lines indicate the forecasting
performance of foreshocks with 4.4 ≤ Mw < 4.8 for unweighted
(τu) and weighted (τw) fractions of space–time occupied by alarms
respectively (see the main text). The black continuous line indi-
cates the performance of a purely random forecasting method that
separates skilled (above the line) from unskilled (below) forecast-
ing methods. The light blue, violet and green lines indicate the
confidence limits for α =50 per cent, 5 per cent and 1 per cent,
respectively.

Figure S5. Same as Fig. S2 for declustered (first) target shocks with
Mw ≥ 5.0 (see the text).
Figure S6. Same as Fig. S3 for declustered (first) target shocks with
Mw ≥ 5.0 (see the text).
Figure S7. Same as Fig. S2 for all target shocks with Mw ≥ 6.0
(not-declustered).
Figure S8. Same as Fig. S3 for all target shocks with Mw ≥ 6.0
(not-declustered).
Figure S9. Same as Fig. S2 for declustered (first) target shocks with
Mw ≥ 6.0.
Figure S10. Same as Fig. S3 for declustered (first) target shocks
with Mw ≥ 6.0.
Figure S11. Same as Fig. S2 for time-independent analysis of
declustered (first) target shocks with Mw ≥ 5.0.
Figure S12. Same as Fig. S3 for time-independent analysis of
declustered (first) target shocks with Mw ≥ 5.0.
Figure S13. Same as Fig. S2 for time-independent analysis of
declustered (first) target shocks with Mw ≥ 6.0.
Figure S14. Same as Fig. S3 for time-independent analysis of
declustered (first) target shocks with Mw ≥ 6.0.
Figure S15. Binomial probability density for all target shocks
(not-declustered) and weighted fraction of space–time occupied by
alarms for different magnitude thresholds (see inset) as a function
of the alarm duration �t .
Figure S16. Probability gain for all target shocks (not-declustered)
and weighted fraction of space–time occupied by alarms for dif-
ferent magnitude thresholds (see inset) as a function of the alarm
duration �t .
Figure S17. Miss rate for all target shocks (not-declustered) for
different magnitude thresholds (see inset) as a function of the alarm
duration �t .
Table S1. List of centre coordinates of CA with radius of 30 km.
Table S2. Values of variables in Molchan and AS score plots of
Figs 2 and 3 for Mw ≥ 5.5 not-declustered targets.
Table S3. Same as Table S2 for Mw ≥ 5.5 declustered targets (Figs 4
and 5).
Table S4. Same as Table S2 for Mw ≥ 5.0 not-declustered targets
(Figs S1 and S2).
Table S5. Same as Table S2 for Mw ≥ 5.0 declustered targets (Figs
S3 and S4).
Table S6. Same as Table S2 for Mw ≥ 6.0 not-declustered targets
(Figs S5 and S6).
Table S7. Same as Table S2 for Mw ≥ 6.0 declustered targets (Figs
S7 and S8).
Table S8. Results of retrospective forecast of first main shocks
(declustered targets) with Mw ≥ 5.0 in Italy from 1960 to 2019,
using �t= 3 months (0.25 yr).
Table S9. Results of retrospective forecast of not-declustered targets
with Mw ≥ 5.0 in Italy from 1960 to 2019, using �t= 3 months
(0.25 yr).
Table S10. Same as Table S9 for not-declustered targets with
Mw ≥ 5.5.
Table S11. Same as Table S9 for not-declustered targets with
Mw ≥ 6.0.
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Artifacts often affect seismic catalogs. Among them, the presence of man-made
contaminations such as quarry blasts and explosions is a well-known problem. Using
a contaminated dataset reduces the statistical significance of results and can lead to
erroneous conclusions, thus the removal of such nonnatural events should be the first
step for a data analyst. Blasts misclassified as natural earthquakes, indeed, may
artificially alter the seismicity rates and then the b-value of the Gutenberg and Richter
relationship, an essential ingredient of several forecasting models.

At present, datasets collect useful information beyond the parameters to locate the
earthquakes in space and time, allowing the users to discriminate between natural and
nonnatural events. However, selecting them from webservices queries is neither easy
nor clear, and part of such supplementary but fundamental information can be lost dur-
ing downloading. As a consequence, most of statistical seismologists ignore the pres-
ence in seismic catalog of explosions and quarry blasts and assume that they were not
located by seismic networks or in case they were eliminated.

We here show the example of the Italian Seismological Instrumental and Parametric
Database. What happens when artificial seismicity is mixed with natural one?

Introduction
Data analysis is a fundamental part of science, and statistical
seismology made important steps forward both in under-
standing and forecasting earthquake dynamics in the last
decades, thanks to the increasing development of seismic net-
works and data acquisition techniques. Besides the main
parameters (location, time, and magnitude), indeed, each
event is nowadays also characterized by several additional
attributes describing the source as well as the origin of the
event itself.

Although databases contain an ever-increasing number of
the events’ properties, some of them might be lost when data
are downloaded from the websites using simplified web accesses.
We here show the case of the Italian Seismological Instrumental
and Parametric Database (ISIDe, ISIDe Working Group, 2007),
in which the event type (earthquake, quarry blast, explosion,
etc.) is indicated since 1 May 2012, but such info is lost during
direct downloading from the website (see Data and Resources)
in .txt format. Indeed, the user can customize the search in terms
of time, magnitude range, location (longitude, latitude, and
depth) but cannot discriminate the event type (see Data and
Resources) because the presence of nontectonic events in the
database is not clearly described in the website itself. As a con-
sequence, nonnatural events such as quarry blasts, controlled,

experimental and mining explosions, may be processed together
with tectonic earthquakes.

How does such loss of information impact the statistical
analysis? What happens when artificial seismicity is mixed
with natural ones?

The maximum magnitude of quarry and mine blasts in
Europe is usually assumed to be 2.5–3.0 (Giardini et al.,
2004; Gulia, 2010), which corresponds to the blast of about
100–500 kg of trinitrotoluene (TNT), assuming the standard
energy release of about 4 MJ per kg of TNT and the
Gutenberg and Richter energy–magnitude relation. A higher
threshold has been observed in the United States, where the
magnitude of quarry and mine blasts can occasionally exceed
magnitude 4 (Stump et al., 2002). Having low magnitudes, the
nonnatural events enrich the number of small earthquakes in a
catalog, falsifying the relative portion of microseismicity in
respect to the higher magnitudes. This might alter the relative
earthquake size distribution and then the b-value of the
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frequency–magnitude relationship by Gutenberg and Richter
(1944). The Gutenberg and Richter relationship is a fundamen-
tal ingredient of several short-term forecasting models; among
them, the epidemic-type aftershock sequence (ETAS) (Ogata,
1988, 1998) that is used in operational earthquake forecasting
(e.g., Jordan et al., 2011), the short-term earthquake probability
model (STEP; Gerstenberger et al., 2005) and the foreshock
traffic light system (FTLS) (Gulia and Wiemer, 2019; Gulia
et al., 2020). Many authors pointed out that the b-value is a
proxy of the state of the stress of a region (e.g., Wyss,
1973), being inversely correlated to it and showed the b-value
capability to be a “stressmeter” of the Earth’s crust at different
scales from laboratory specimens (e.g., Scholz, 1968) to obser-
vations (Schorlemmer and Wiemer, 2005; Schorlemmer et al.,
2005; Gulia et al., 2010, 2016, 2018; Tormann et al., 2015;
Petruccelli et al., 2018; Petruccelli, Gasperini, et al., 2019;
Petruccelli, Schorlemmer, et al., 2019). The b-value can have
a precursory drop before the failure (Papadopoulos et al.,
2010; Nanjo et al., 2012; Schurr et al., 2014; Tormann et al.,
2015; Gulia et al., 2016; Gulia and Wiemer, 2019; Huang et al.,
2020) suggesting that the seismicity evolution in terms of b-
value should be routinely monitored. Such finding is con-
firmed in numerous laboratory studies, showing an increasing
relative proportion of larger events as the system approaches
failure (e.g., Goebel et al., 2013).

The higher b-values, resulting from an artificial enrichment
of the portion of low-magnitude events in regional catalogs,
can mask the spatiotemporal variations, altering the alerts
and be misinterpreted as a change in the natural phenomena.

Long-term models can also be affected by falsified seismic
rates and b-values. In the probabilistic seismic hazard assess-
ment (PSHA, usually based on Cornell, 1968), the Gutenberg
and Richter relationship defines event rates used to compute
expected levels of ground shaking. PSHA, indeed, assumes a
Poissonian distribution of seismicity and such requirement
is generally satisfied by declustering the input catalog
(Gardner and Knopoff, 1974; van Stiphout et al., 2010). For
such reason, in the hazard assessment, rates are estimated on
declustered catalogs (Wiemer et al., 2009; Field et al., 2014;
Petersen et al., 2018). Mizrahi et al. (2021) show that declus-
tering can introduce a systematic bias to the size distribution of
earthquakes, potentially biasing hazard assessment, and
Iervolino (2019) proposes a generalization of the hazard inte-
gral to reintroduce aftershocks in PSHA. However, at present,
the seismic rates are still estimated on declustered catalogs.
Once the aftershocks are removed, the relative portion of
quarry blasts, if present, increases as these latter usually occur
almost uniformly in time, and the b-value of the grid node or
zone are affected by artificial events, too. As a consequence, the
rates of the highest magnitudes are underestimated. Although
in Italy the input dataset is usually cut at magnitude 4, in other
countries (e.g., Switzerland; Wiemer et al., 2009) the threshold
magnitude cutoff is lower.

Stress-based spatiotemporal models that describe the after-
shocks productivity, can also be biased by quarry blasts; the
expected rate of earthquakes in a given magnitude range
(e.g., Dieterich, 1994) is indeed a function of the background
seismicity.

It is important that high b-values can be observed in differ-
ent natural settings, such as the volcanic regions (e.g., Wyss
et al., 1997, 2001; Roberts et al., 2015) as well as in enhanced
geothermal systems during the coinjection period (Bachmann
et al., 2012) and in hydrocarbon reservoirs during extraction of
natural gas (Muntendam-Bos et al., 2017). Being able to dis-
criminate between natural, induced, and nonnatural b-values
can help seismologists to understand and interpret the physical
phenomena under investigation.

For all the reasons mentioned earlier, nonnatural events
must be identified, mapped, and excluded from the catalogues
before any meaningful statistical analysis can be performed.
Statistical seismologists use catalogs assuming explosions have
been eliminated but, as we showed before in the case of direct
download from some websites, such events can erroneously be
included in the catalogs.

Italy is an ideal testing region due to the simultaneous pres-
ence of a dense seismic network and several extraction sites. In
2014, the number of mining and quarrying active extraction
sites in Italy was equal to 4612 (see Data and Resources)
and a detailed map is available at the Italian Institute for
Environmental Protection and Research (ISPRA) website
(see Data and Resources) but no information is given on which
of them use explosives.

Explosives are the primary source of energy for rock break-
ing in the mining, quarrying, and construction industries
(Sanchidrián et al., 2007; Hamdi et al., 2008), particularly
for the building materials. Underground mines are also exca-
vated by explosions as well as salt and coal basins are mined by
blasting. Explosives are also largely employed in civil engineer-
ing (e.g., tunnel and subway) and in offshore seismic pro-
specting.

Wiemer and Baer (2000) proposed a purely statistical tool to
identify quarry and mine blasts based on the ratio between
daytime and nighttime D/N events. In the case of all-natural
events, such value should be around 1 ideally or more probably
slightly lower, due to the lower magnitude detection threshold
in nighttime owing to the lower level of anthropic seismic
noise. On the contrary, the presence of nonnatural events
should increase such ratio because mine blasts are usually per-
formed during daytime.

In this work, we first show the D/N maps performed, by the
tool proposed by Wiemer and Baer (2000), for two versions of
ISIDe: the one downloaded directly from the website in .txt
format and the one downloaded by the Istituto Nazionale di
Geofisica e Vulcanologia (INGV) webservices (see Data and
Resources), selecting the event type earthquake, in the period
2005–2020. Then, by the comparison with the related b-value
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maps, we show the correspondence between unusually high
b-values in the maps (b > 1:4–1:5) to the areas with the highest
D/N: the presence of nonnatural events, mixed with natural
ones, falsifies both the seismic rates and the b-value of the
Gutenberg and Richter relationship.

Gulia (2010) mapped the D/N ratio for the available
European regional catalogs, highlighting the presence of numer-
ous quarry blasts; among them the Italian Seismicity Catalog

(C.S.I. 1.1; Castello et al.,
2006), that contains about
100,000 earthquakes during
period 1981–2002. From 1
May 2012, the indication of
event types different from
earthquake is routinely pro-
vided by the Italian Seismic
Network: we thus repeat the
same analysis on the dataset
downloaded via webservice,
selecting only the event type
earthquake: are all the events
contained in such version,
earthquakes only? Are all the
quarry blasts recorded by the
network, correctly identified?

Data and Method
We compute the D/N ratio
maps (Fig. 1a–d) for different
time periods, on a 10 km regu-
larly spaced grid using the
events, within a 20 km radius
from each node, taken from
ISIDe (ISIDe Working Group,
2007). ISIDe contains the
parameters of earthquake loca-
tions computed by the INGV
National Seismic Network since
1985 but as input data for our
estimates, we select events from
16 April 2005 (last accessed
November 2020), when the
Italian Seismic Network was
reorganized and extended and
the quality of hypocentral
locations and magnitudes was
definitely improved, to 30
November 2020.

The D/N is defined as fol-
lows:

EQ-TARGET;temp:intralink-;df1;445;197Rq � NdLn=NnLd; �1�

in which Nd is the total number of events in the daytime, Nn is
the total number of events in the nighttime period, Ld is the
number of hours in the daytime period, and Ln is the number
of hours in the nighttime period. According toWiemer and Baer
(2000), an indicative value for the anomalous D/N is >1:5, well
highlighted by the implemented color palette that, from around
1.5, abruptly changes from blue-sky to pink shades.We define as
daytime the hours from 7 a.m. to 6 p.m. and nighttime the hours

Figure 1. Maps of the daytime to nighttime ratio (D/N). (a) For the time interval 2005–2020 and for
the whole dataset downloaded in .txt format (see Data and Resources). The letters A–J correspond
to the excavation districts listed in Table 1. (b) For the time interval 16 April 2005–30 April 2012, in
which the events are classified with event type earthquake. (c) For the time interval 1 May 2012–30
November 2020, for all the events downloaded in .txt format (see Data and Resources). (d) For the
time interval 1 May 2012–30 November 2020, for all the events downloaded via webservices
selecting the event type earthquake only. The maps are computed on a 10 km regularly spaced grid
using the events within a 20 km radius from each node.
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from 6 p.m. to 7 a.m. According to equation (1), the number of
events in each time window are normalized to the number of
hours (11 for day -Ld- and 13 for night -Ln-).

We then established three different time periods:

• 16 April 2005–30 November 2020: the whole dataset down-
loaded in .txt format (see Data and Resources);

• 16 April 2005–30 April 2012, when the event-type info is not
yet available: natural and nonnatural events are mixed

together and indicated with
event type earthquake; they
can be identified only by
statistical analysis. Even a
dataset downloaded via web-
services, specifying the event
type earthquakes, is conta-
minated by nonnatural
events in the time period
preceding May 2012; and

• 1 May 2012–30 November
2020: when the even-type
info is available. For such
time interval, we calculate
two maps: one for the events
downloaded in .txt format
(see Data and Resources)
and one selecting only the
events identified as “earth-
quakes” via webservices
(see Data and Resources).

We then calculate the b-
value map for the two catalogs
(the one containing all the
events and the one contained
the events classified as earth-
quake only) in the whole
period 16 April 2005–30
November 2020 (Fig. 2a,b),
using the same grid and the
same radius adopted in
Figure 1a–d. The magnitude
of completeness is estimated
at each grid node (maximum
curvature, Wiemer and Wyss,
2000) with a 0.2 correction
(Woessner and Wiemer,
2005) and we require a mini-
mum sample size of 50 events
above Mc to compute the
b-value by the maximum-
likelihood method. We could
not estimate a b-value for all

the grid nodes with an already associated D/N due to the
minimum number of events above Mc required for the
b-value.

For some of the grid nodes with anomalous D/N, we show
the histograms of the hour of the events that represents a first
and effective tool to identify the presence of quarry blasts
in a catalog. Quarry and mine-rich regions, indeed, reveal a
typical pattern, with a very large number of events during
daytime hours.

Figure 2. (a,b) Maps of the b-value for the time interval 16 April 2005–30 November 2020,
computed on a 10 km regularly spaced grid using the events within a 20 km radius from each node
for (a) the whole dataset downloaded in .txt format (see Data and Resources) and (b) the whole
dataset downloaded via webservices selecting the event type earthquake only. (c,d) Plot of the D/N
against the b-value for all the grid nodes adopted in the previous maps for (c) the whole dataset
downloaded in .txt format (see Data and Resources) and (d) the whole dataset downloaded via
webservices selecting the event type earthquake.
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Results
In all the four maps, anomalous high D/N are sparse on the
whole Italian territory and most of them have been identified
and described in Gulia (2010), corresponding to known exca-
vation districts, such as Apuane–Garfagnana and Fabriano
(respectively, areas D and F in Fig. 1a; see Table 1 for the list
of the excavation districts in Fig. 1a). The user, in the case of a
download in .txt format (see Data and Resources), would
unconsciously download also a big number of nonnatural
events that would then be erroneously processed as earth-
quakes (Fig. 1a).

Because the event types different from earthquake are speci-
fied only from 1May 2012, even a dataset downloaded via web-
services specifying the event type as earthquake would be
contaminated by nonnatural events till such date: Figure 1b
shows the D/N map from 2005 to 30 April 2012. Unluckily,
copious nonnatural events are inevitably downloaded from
webservices in any case also by a user who selects only the
event type earthquake. The high-contaminated regions are
about the same of Figure 1a.

The last two maps (Fig. 1c,d) show and compare the D/N, in
the time period staring from the event type identification (May
2012), for the two catalogs. Here also the contaminated regions
are about the same of Figure 1a,b, but often with a smaller size
and value, due to the partial blasts’ identification, that some-
what reduces the gap between the number of daily and night-
time events.

The similarity between these two maps (2012–2020) com-
pared to the previous period (2005–2012, Fig. 1b), indeed,
points out the improved capability of the network operators
to detect and identify nonnatural events in some areas, how-
ever a very significant contamination still persists. Before ana-
lyzing in detail the most contaminated regions, we compare the

D/N maps in Figure 1 with the two b-value maps in
Figure 2a,b, for the whole time period and for the two catalogs:
most of the regions with an unusually high b-value (>1:4–1:5)
and a corresponding high D/N (>1:5) are well-known active
excavations districts. Furthermore, the correspondence
between high D/N and high b-values is well represented in
Figure 2c,d, in which we plot the D/N and the b-value for all
the grid nodes of the maps: the b-values in the range that is
usually observed in different natural settings (0.6–1.2/1.3)
are well correlated with the typical values of the D/N ratio, that
is around 1 and lower. On the contrary, unusually high
b-values correspond mainly to the highest D/N ratios.

In the Introduction, we wonder whether all the quarry blasts
recorded by the network are correctly identified: by the obser-
vation of the above maps and plots, we may already claim they
are not. However, hereafter, we will list and comment in detail
the regions, labeled from A to J in Figure 1a, by the analysis of
some specific grid nodes with anomalous D/N and the
comparison, when possible, with the corresponding b-values,
for the time periods 16 April 2005–30 April 2012 and 1 May
2012–30 November 2020.

The histograms containing the hour of the day of the total
number of the events for the regions A, B, C, and E are shown
in Figure 3, together with their seismicity maps. The relative
D/N ratios are displayed too. In these four regions, most of
the events have been recorded between 10 a.m. and 3 p.m., with
a minimum around the lunch break (e.g., Fig. 3c,d,k,o), as
already pointed out in Gulia (2010). The spatial clusters of
events locate the active quarries (Castello and Pagagnone,
2016; see Data and Resources). In the regions A and B
(Fig. 3a–h) the D/N of the second time period, that is when
the catalog should contain only earthquakes, is even higher
than in the previous one. On the contrary, the D/N in the
regions C and E (Fig. 3i–p) decreases with time but remains
higher than 1.5, indicating a partial identification of nonnatu-
ral events; however, the three very restricted, well-defined, and
isolated spatial clusters in the seismicity map of the grid node
in region E (Fig. 3n) are the best visual example, among the
several ones we analyzed, of the highly suspected nonnatural
origin of the events. In this grid node, the daytime events have
been recorded mostly between 9.55 a.m. and 10 a.m. during
spring and summer and between 10.55 a.m. and 11 a.m. during
autumn and winter, indicating a one-hour shifted time of the
blasting operations due to the daylight-saving time on spring–
summer in Italy. Such peculiarity also characterizes the events
in the time period following May 2012, in which the quarry
blasts should had been identified and classified with the correct
event type by the network.

For these four regions, where quarries and mines are active
and the natural seismicity is very low, we could not calculate
and compare the b-values of the two time periods.

But what happen in seismically active regions with working
quarries and mines? That is the case of the regions labeled as D

TABLE 1
List of the Excavation Districts Labeled in Figure 1
with the Letters A–J and the Extracted Material

Letter Excavation District Material

A Albiano–Trento Porphyry

B Issogne–Gressoney Green marble, limestone, slate

C Savona Limestone and quartzite

D Apuane–Garfagnana White, red, and black marble

E Maremma Limestone

F Cingoli–Marche Limestone

G Riofreddo Limestone and basalt

H Gargano Marble and limestone

I Altamura–Matera Limestone and marble

J Siracusa Porphyry and basalt
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Figure 3. Spatial and statistical analysis of four grid nodes in the
areas labeled as A, B, C, and E in Figure 1a. (a,b) Seismicity maps
and histograms of the hours of the events (c,d) for a grid in area A
for, respectively, the events downloaded (see Data and
Resources) in the period 16 April 2005–30 April 2012 and for the
events downloaded via webservices selecting the event type
earthquake from 1 May 2012–30 November 2020. (e,
f) Seismicity maps and histograms of the hours of the events (g,
h) for a grid in area B for, respectively, the events downloaded
(see Data and Resources) in the period 16 April 2005–30 April
2012 and for the events downloaded via webservices selecting
the event type earthquake from 1 May 2012–30 November

2020. (i,j) Seismicity maps and histograms of the hours of the
events (k,l) for a grid in area C for, respectively, the events
downloaded (see Data and Resources) in the period 16 April
2005–30 April 2012 and for the events downloaded via web-
services selecting the event type earthquake from 1 May 2012–
30 November 2020. (m,n) Seismicity maps and histograms of the
hours of the events (o,p) for a grid in area E for, respectively, the
events downloaded (see Data and Resources) in the period 16
April 2005–30 April 2012 and for the events downloaded via
webservices selecting the event type earthquake from 1 May
2012–30 November 2020.
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and F in Figure 4 and G in Figure 5, that are excavation
districts, also affected by natural seismicity.

In Figure 4, we show a seismically active area in northern
Tuscany (area D in Fig. 1a): the Apuane–Garfagnana district,

that is a well-known excavation district since the age of ancient
Romans. The white marble, also known as “white gold,” that
artists like Michelangelo Buonarroti and Antonio Canova
transformed into world heritage masterpieces, was mined here.

Figure 4. Spatial and statistical analysis of two grid nodes in the
areas labeled as D and F. Grid node in area D in the time period 16
April 2005–30 April 2012: (a) seismicity map with two spatial
clusters, D1 and D2, circled in black; histogram of the hour of
events and relative D/N for (b) all the events in the grid node,
(c) all the events in the D1 spatial cluster, and (d) all the events in
the D2 spatial cluster. Grid node in area D in the time period 1
May 2012–30 November 2020: (e) seismicity map with two
spatial clusters, D1 and D2, circled in black; histogram of the hour
of events and relative D/N for (f) all the events in the grid node,
(g) all the events in the D1 spatial cluster, and (h) all the events in
the D2 spatial cluster. (i) Frequency–magnitude distributions for
all the events in the grid node D from 16 April 2005 to 30 April
2012 (blue circles) and from 1 May 2012 to 30 November 2020

(red asterisks). Grid node in area F in the time period 16 April
2005–30 April 2012: (j) seismicity map with two spatial clusters,
F1 and F2, circled in black; histogram of the hour of events and
relative D/N for (k) all the events in the grid node, (j) all the events
in the F1 spatial cluster, and (m) all the events in the F2 spatial
cluster. Grid node in area F in the time period 1 May 2012–30
November 2020: (n) seismicity map with two spatial clusters, F1
and F2, circled in black; histogram of the hour of events and
relative D/N for (o) all the events in the grid node, (p) all the
events in the F1 spatial cluster, and (q) all the events in the F2
spatial cluster. (r) Frequency–magnitude distributions for all the
events in the grid node F from 16 April 2005 to 30 April 2012
(blue circles) and from 1 May 2012 to 30 November 2020 (red
asterisks).
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Figure 5. Spatial and statistical analysis of two grid nodes in the
areas labeled as G and H. Grid node in area G in the time period
16 April 2005–30 April 2012: (a) seismicity map with two spatial
clusters, G1 and G2, circled in black; histogram of the hour of
events and relative D/N for (b) all the events in the grid node,
(c) all the events in the G1 spatial cluster, and (d) all the events in
the G2 spatial cluster. Grid node in area G in the time period 1
May 2012–30 November 2020: (e) seismicity map with two
spatial clusters, G1 and G2, circled in black; histogram of the
hour of events and relative D/N for (f) all the events in the grid
node, (g) all the events in the G1 spatial cluster, and (h) all the
events in the G2 spatial cluster. (i) Frequency–magnitude distri-
butions for all the events in the grid node G from 16 April 2005 to
30 April 2012 (blue circles) and from 1 May 2012 to 30

November 2020 (red asterisks). Grid node in area H in the time
period 16 April 2005–30 April 2012: (j) seismicity map with two
spatial clusters, H1 and H2, circled in black; histogram of the hour
of events and relative D/N for (k) all the events in the grid node,
(j) all the events in the H1 spatial cluster, and (m) all the events in
the H2 spatial cluster. Grid node in area H in the time period 1
May 2012–30 November 2020: (n) seismicity map with two
spatial clusters, H1 and H2, circled in black; histogram of the hour
of events and relative D/N for (o) all the events in the grid node,
(p) all the events in the H1 spatial cluster, and (q) all the events in
the H2 spatial cluster. (r) Frequency–magnitude distributions for
all the events in the grid node H from 16 April 2005 to 30 April
2012 (blue circles) and from 1 May 2012 to 30 November 2020
(red asterisks).
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In the first time period, from April 2005 till the end of April
2012, the events in this small area are spatially clustered (D2)
and the histogram of the hour of the events (Fig. 4b) shows the
typical pattern of quarry rich area: the events are concentrated
between 9 a.m. and 11 a.m. In the following time period (from
1 May 2012 to 30 November 2020), the events are still spatially
clustered (Fig. 4e) but toward the north (D1) and the histo-
gram of the hour of the events (Fig. 4f) shows now the typical
pattern of a slightly contaminated area. The nighttime hours
have the highest peaks, but there are still peaks around 10 a.m.
and 3 p.m. That is due to the simultaneous identification of
most of blasts (The D/N of D2 passes from 40 to 1.8, e.g.,
Fig. 4d,h) and to a seismic sequence with a maximum ML

of 4.8 that hit the region on January 2013 (D1): its aftershocks
increases the number of events in the grid nodes that passed
from about 30 events per year to 90 whereas the overall b-value
decreases from 1.5 (almost all blasts) to 1.1 (blasts and after-
shocks; Fig. 4i). It is important that in the epicentral area of the
ML 4.8, the D/N remains below 1, even if a very small contami-
nation is clear (hours 11 a.m. and 3 p.m., Fig. 4g), in fully
agreement with Wiemer and Baer (2000): the detection thresh-
old is generally lower during the day due to the ambient noise
and, as a consequence, regions not containing quarries gener-
ally show a decrease in the number of events detected during
the day and an increase during the night. Thus, we should
expect a D/N lower than 1, in the case of natural seismicity
and this grid node is a perfect illustration. The same grid node
also illustrates the example of nonnatural events, in D2.

In this region, the b-value results from the mixing of natural
and nonnatural events: there has been a strong improvement
with time and most of blasts are now correctly identified by the
network, even if a further effort is required to identify and
remove all of them.

In Figure 4j–r, we show the case of a grid node in a seis-
mically active area with only low-magnitude events (area F
in Fig. 1a; the Cingoli district, Marche), that is another
well-known and wide extraction district of the country, already
described in Gulia (2010). In the seismicity maps (Fig. 4j,n), the
events are spatially clustered in few main areas. We here
choose two of them, named F1 and F2, to compare the evo-
lution with time of a seismically active area (F1) with an extrac-
tion one (F2). Before May 2012, only three events have been
recorded in F1 and more than 80% of the events in the whole
grid node occurred during daily hours: the D/N of the node is
5.5 (Fig. 4k); after such date, the D/N passes to 0.8, showing a
small blast contamination (Fig. 4o). The D/N of the natural
seismicity in F1 is always below 1, whereas the D/N in F2
decreases from 70 to about 6: as already shown in the previous
case, most of blasts are nowadays identified by the network, but
several ones still remain.

The overall b-value of the events in the grid node, before May
2012, is 1.4 (Fig. 4r); a very high value respect to the one
expected from this area, considering its prevalent style-of-

faulting (Gulia and Wiemer, 2010). After such date, the b-value
decreases to 1.2, possibly due to the increment of natural seis-
micity and the contemporary partial identification of nonnatural
events. As for the grid node in region D, the overall b-value
results from the mixture of natural and nonnatural events.

Figure 5 illustrates two interesting case studies: the first one
is about a grid node in the region labeled as G in Figure 1a,
Central Italy. Natural and nonnatural seismicity are mixed
together, as revealed by the histograms of the hour of the
events of two small spatial clusters (G1 and G2): before
May 2012, 349 events out of 354, in G1, are daytime events
and the relative b-value (1.9 in Fig. 5i) is unusually high, more
than twice that typical, according to Gulia and Wiemer (2010),
for the region. The G1 excavation area has been successfully
identified after 2012, indeed ISIDe, in the following period,
contains only four events, two during daytime and two during
nighttime. Few blasts still remain also in the adjacent areas G2;
however, this area has been successfully located by the network
operators and most of nonnatural events identified. The overall
b-value decreases to 1.1.

As well as for the previous case, in the grid node in area H
(Fig. 5j–r) most of blasts have been successfully identified. The
D/N of the whole area passes from 5 to 1 and the b-value
decreases from 1.2 (resulting from many blasts and few natural
events) to 0.9 (few blasts Fig. 5r).

The last two case studies, shown in Figure 6 (areas labeled as
I and J in Fig. 1a), exhibit a similar evolution in time. Most of
the seismicity before May 2012 is composed by nonnatural
events. The D/N are, respectively, 2.6 and 43 (Fig. 6b,k) and
the b-values 1.7 and 2.2 (Fig. 6i,r), among the highest values
in the whole country. After May 2012, both D/N and b-value
decreases, possibly due to the correct but still partial identifi-
cation of nonnatural events.

Finally, because quarry blasts are performed during the day,
the nighttime events should be all tectonic and scale with a
lower b-value respect to the daytime events. We then divided
the events according to the hour of the day for the above grid
nodes with low-magnitude events only and show the compari-
son of the frequency–magnitude distributions for the two
periods (Fig. 7). The theoretical expected behavior is fully
confirmed for all the five nodes. The nighttime b-value are all
well below the daytime ones, in some cases less than the half.

Discussion and Conclusion
Every day, beyond tectonic events, seismic networks detect
several nonnatural earthquakes: among them, quarry and mine
blasts are the most numerous anthropogenic recorded events.
Often, such events are not identified and thus collected
together with tectonic events.

Having low magnitudes, the artificial events enrich the
number of small earthquakes in a catalog, contaminating
the natural signals and seismicity datasets adulterating the
relative portion of microseismicity respect to the higher
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magnitudes. The resulting seismic rate changes and the relative
earthquake size distribution, or b-value of the Gutenberg and
Richter (1944), are falsified.

The natural signal is then contaminated, impacting many
short-term forecasting models, such as ETAS (Ogata, 1988,
1998) or the FTLS (Gulia and Wiemer, 2019), in which seismic

Figure 6. Spatial and statistical analysis of two grid nodes in the
areas labeled as I and J. Grid node in area I in the time period 16
April 2005–30 April 2012: (a) seismicity map with two spatial
clusters, I1 and I2, circled in black; histogram of the hour of
events and relative D/N for (b) all the events in the grid node,
(c) all the events in the I1 spatial cluster, and (d) all the events in
the I2 spatial cluster. Grid node in area I in the time period 1 May
2012–30 November 2020: (e) seismicity map with two spatial
clusters, I1 and I2, circled in black; histogram of the hour of
events and relative D/N for (f) all the events in the grid node,
(g) all the events in the I1 spatial cluster, and (h) all the events in
the I2 spatial cluster. (i) Frequency–magnitude distributions for all
the events in the grid node I from 16 April 2005 to 30 April 2012
(blue circles) and from 1 May 2012 to 30 November 2020 (red

asterisks). Grid node in area J in the time period 16 April 2005–30
April 2012: (j) seismicity map with two spatial clusters, J1 and J2,
circled in black; histogram of the hour of events and relative D/N
for (k) all the events in the grid node, (j) all the events in the J1
spatial cluster, and (m) all the events in the J2 spatial cluster. Grid
node in area J in the time period 1 May 2012–30 November
2020: (n) seismicity map with two spatial clusters, J1 and J2,
circled in black; histogram of the hour of events and relative D/N
for (o) all the events in the grid node, (p) all the events in the J1
spatial cluster, and (q) all the events in the J2 spatial cluster.
(r) Frequency–magnitude distributions for all the events in the
grid node J from 16 April 2005 to 30 April 2012 (blue circles) and
from 1 May 2012 to 30 November 2020 (red asterisks).
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rates and b-value, both inferred from the Gutenberg and
Richter relationship, are a basic ingredient.

Long-term analysis, such as PSHA, can be also impacted by
nonnatural events. Quarry blasts, if present, increase the b-
value of the grid node or zone affected by artificial events,
resulting in an underestimation of the highest magnitude rates.

In this work, we show the example of the ISIDe, in which the
event types of the nonnatural events are available since 1 May
2012 only. In the custom search page (see Data and Resources),
the user can set the starting and the end date, the magnitude as
well as the latitude, longitude and the depth ranges, but the event
type is not mentioned. Being the event type is not available
among the custom search options in ISIDe, the user downloads
also nonnatural events, not being conscious of this.

Other online available catalogs, for example, The Advanced
National Seismic System Comprehensive Earthquake Catalog
(ComCat; see Data and Resources) by U.S. Geological Survey
(USGS), allows the user to also set the event type among the
advanced options. The event type option for ISIDe can be set
only when retrieving data via webservices.

We download and compare two versions of ISIDe, one
downloaded at – see Data and Resources and one downloaded
via webservices, specifying the event type earthquake. Are all
the nonnatural events correctly recognized? If not, how many
nonnatural events, misclassified as earthquakes, do impact the
b-value?

As a first test, we spatially map the ratio of D/N events, pro-
posed by Wiemer and Baer (2000) to investigate the presence
of quarry blasts, for different time intervals of the two catalogs,
showing that:

• in the whole period (16 April 2005–30 November 2020), the
dataset downloaded (see Data and Resources) in .txt format

is heavily contaminated by quarry blasts in the whole Italian
territory (Fig. 1a);

• the period 16 April 2005–30 April 2012, in which the event
type is always indicated as earthquake and thus the events
are common to both catalogs, shows an even wider contami-
nation that can be detected only by statistical analysis
(Fig. 1b); and

• the following time period, that is 1 May 2005–30 November
2020, is still highly contaminated by nonnatural events in
both catalogs (Fig. 1c,d). However, in the known extraction
districts, there is a general improvement for the catalog
downloaded via webservices. Some areas where extractions
started after 2012 (e.g., area B, Fig. 3b) seem to be unknown.

We then spatially map the b-value for the two catalogs using
the same grid and radius already adopted for the D/N maps
(Fig. 2a,b): because we required a minimum number of events
above Mc to calculate the b-value; not all the grid nodes with a
D/N have a corresponding b-value. The regions with unusually
high b-values (>1:4–1:5) well correspond to the regions with
high D/N in Figure 1. To further highlight the correlation
between high b-value and high D/N, we plot the two values for
the same grid nodes (Fig. 2c,d), confirming the correspondence.

Some of the grid nodes with anomalous D/N have been ana-
lyzed in detail. For such areas, we show the seismicity maps, the

Figure 7. Comparison of the frequency–magnitude distributions
for the five grid nodes in Figures 3–6 with low-magnitude events
only (B, C, G, I, and J) for all the daytime (black circles) and
nighttime (gray squares) events for the dataset downloaded via
webservices (event type earthquake) from16 April 2005 to 30
November 2020.
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histograms of the hour of the events (Figs. 3–6) and, when pos-
sible, the frequency–magnitude distributions before and after 1
May 2012. There has been a general improvement with time,
and several quarry blasts are now correctly identified by the
network’s operators; however many ones still remain, affecting
the b-value estimations and increasing the portion of low-mag-
nitude events.

The seismicity of the grid node in Figure 4a–i offers an inci-
sive and clear example of artificial b-value temporal fluctua-
tions due to nontectonic events. It is an excavation area hit
by anML 4.8 in 2013. If we compare the frequency–magnitude
distributions of the two periods (Fig. 4i), we note an apparent
27% b-value decrease (from 1.5 to 1.1). According to several
forecasting models and evidence from laboratory specimens,
such decrease should suggest a change in the physical condi-
tion of the region, resulting somewhat in an alert for an
impending strong earthquake.

Finally, because quarry blasts are performed during the day,
we expect that all the nighttime events are natural earthquakes.
We compare, in Figure 7, the frequency–magnitude distribu-
tions of D/N events for some of the previous analyzed grid
nodes with no events with magnitude greater than 3.5; all
the daytime b-value are higher than the nighttime ones.

Our analysis reveals the presence of numerous quarry blasts
in the ISIDe (ISIDe Working Group, 2007) in the period 16
April 2005–30 April 2012, misclassified as earthquakes.
After 1 May 2012, there is a general improvement in identify-
ing the event type. However, many quarry blasts are still not
correctly classified and such improvement is lost when the user
downloads the event list in .txt format (see Data and
Resources).

Data and Resources
The Italian Seismological Instrumental and Parametric Database (ISIDe,
ISIDe Working Group, 2007) is available at http://terremoti.ingv.it/en/
search and from the Istituto Nazionale di Geofisica e Vulcanologia
(INGV) webservices for full download (webservices.ingv.it/fdsnws/
event/1/). Both figures and calculations were performed by MATLAB,
available at www.mathworks.com/products/matlab. The number of min-
ing and quarrying active extraction sites is available at http://
www4.istat.it/. The Italian Institute for Environmental Protection and
Research (ISPRA) is available at https://www.isprambiente.gov.it/en/
istitute. The INGV earthquake event is available at http://webservices.
ingv.it/fdsnws/event/1/. The information about authorized quarries
are available at https://www.regione.vda.it/territorio/territorio/attivita_
estrattive/cave/cave_autorizzate_i.aspx and http://www.pianidibacino.
ambienteinliguria.it/SV/03centa/varianti/DDG_2019_7664.pdf. The U.S.
Geological Survey (USGS) earthquake catalog is available at https://
earthquake.usgs.gov/earthquakes/search/. All websites were last accessed
in February 2021.
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Abstract
Dascher-Cousineau et al. (2020) apply the so-called foreshock
traffic-light system (FTLS) model proposed by Gulia and
Wiemer (2019) to two earthquake sequences that occurred after
the submission of the model: the 2019 Ridgecrest (Mw 7.1) and
the 2020Mw 6.4 Puerto Rico earthquakes. We show in this com-
ment that the method applied by Kelian Dascher-Cousineau
et al. (2020) deviates in at least six substantial and not well-doc-
umented aspects from the original FTLS method. As a conse-
quence, they used for example in the Ridgecrest case only 1%
of the data available to estimate b-values and from a small sub-
volume of the relevant mainshock fault. In the Puerto Rico case,
we document here substantial issues with the homogeneity of
the magnitude scale that in our assessment make a meaningful
analysis of b-values impossible. We conclude that the evaluation
by Dascher-Cousineau et al. (2020) is misrepresentative and a
not a fair test of the FTLS hypothesis.

Introduction and Context
Dascher-Cousineau et al. (2020, henceforth DC2020) applies
the so-called foreshock traffic-light system (FTLS) model pro-
posed by Gulia and Wiemer (2019, henceforth GW2019) to
two earthquake sequences that occurred after the submission
of the model: the 2019Mw 7.1 Ridgecrest and the 2020Mw 6.4
Puerto Rico earthquakes. We appreciate that DC2020 decided
to evaluate our model and hypothesis pseudoprospectively on
independent data and partially with their own code implemen-
tation. This is exactly how science needs to work: hypotheses
proposed by one group need to be evaluated independently by
others. For this reason, we also provided as part of GW2019 the
source code used for the analysis. However, in our assessment
documented here, the study by DC2020 contains substantial
deviations from the originally proposed method, including
demonstratable errors, which then lead the authors to partially
incorrect conclusions.

Because DC2020 did not provide their source code nor their
datasets as part of the publication, we requested them directly
from the authors, who kindly supplied them for the Ridgecrest

case. This comment addresses the deviations introduced by
DC2020 in their study for each of the two mainshocks individu-
ally and draws some common conclusions.

Ridgecrest Case Study
For the first sequence (Ridgecrest), the analysis by DC2020
resulted in a red FTLS alert after the Mw 6.4 event and in
an orange alert after theMw 7.1 event. Meanwhile, in the same
SRL issue, Gulia et al. (2020) published their own pseudopro-
spective assessment of this sequence, also reporting a red FTLS
alert after the Mw 6.4 but a green alert following the Mw 7.1
two days later. The observed differences between these two
articles in the FTLS setting and in the underlying b-value time
series are a direct consequence of the substantial deviations
from the GW2019 approach as implemented by DC2020.
Here we document these deviations in methodology intro-
duced by DC2020 step by step.

Correctly establish the reference b-value for the
first mainshock
A critically important parameter to be established in the FTLS
model is the local reference b-value because the FTLS decisions
are based on the difference in percent between the sequence-
specific b-values and the reference b-value. According to the
GW2019 hypothesis, it is important to establish the reference
b-value such that (1) it is only based on earthquake immediately
near the initiating mainshock fault (i.e., within 3 km of the fault)
because b-values vary substantially with space, and (2) it uses a
long time series, to have the statically most robust estimate that
averages over temporal variations. For the background of
Californian sequences in Gulia et al. (2018), we start our analysis
from 1981, when the network was greatly improved (e.g.,
Tormann et al., 2014). Therefore, for our Ridgecrest analysis
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presented by Gulia et al. (2020), we use a 39 yr long background
catalog. DC2020 started their analysis only in the year 2000,
resulting in a factor of two reduction of the data used. This
choice was made to avoid the influence of the 1992 Mw 7.3
Landers and 1999 Mw 7.1 Hector Mine aftershocks (Kelian
Dascher-Cousineau, personal comm., 2020). However, these
two sequences occurred, ∼200 and 170 km from the
Ridgecrest mainshock, respectively, distances well beyond the
Gardner and Knopoff (1974) radii of influence for both magni-
tudes and neither of these mainshocks, had a noticeable impact
on earthquake rates in the Ridgecrest area. We thus consider
1981 the better justified starting date, but this choice is indeed
a subjective one and not fully automate in the approach yet.

Deviation 1.1: DC2020 use a catalog from the year 2000,
although we advise (and do so in Gulia et al., 2018, 2020)
to use data from 1981.

Estimating reliable b-values also requires a robust, automated
estimation of the magnitude of completeness. In GW2019, we
use the so-called maximum curvature method by Woessner
and Wiemer (2005) and apply it as suggested in their article:
we first cut for robustness the catalog close to the overall catalog
completeness and then re-estimate Mc for each timestep.
We differentiate in purpose between the background b-values
estimation, in which we apply as an overall Mc cut
(Mc_maxCurve_overall—0.2), and aftershock sequence that are
both data rich and have strongly varyingMc with time, in which
we apply as on overall Mc cut of (Mc_maxCurve_overall, thus
0.2 higher). In both cases, we then re-estimate Mc in each time
bin using Mc_maxCurv + 0.2. This procedure has been docu-
mented in the article and in detail in the source code.

DC2020 argued that the Mc pre-cutting approach outlined
earlier is actually an error in our code that they detected (which
it is not) and modified it such that they added an additionalMc

increment I of +0.2 for also estimating the background
b-values.

Deviation 1.2: DC2020 apply erroneously a “safety” Mc

increment of +0.4 rather than +0.2 for the background b-value
calculations.

These two deviations from our published method decrease
the number of events available to establish the reference
b-value with 3 km of the fault plane by 93%, from 1154 to
89, which then is well below the critical threshold of 250 events
defined as a quality criterion in GW2019. Therefore, DC2020
select events in a circle around theMw 6.4 epicenter (the alter-
native method used by GW2019 for inferior datasets) instead
of along the actual fault plane.

Deviation 1.3: To establish the reference b-value, DC2020
sample events in circular region of ∼10 km around the epicen-
ter, but Gulia et al. (2020) use events in a box within 3 km of
the rupture plane.

The combined impact of these three deviations is illustrated
in Figure 1. Figure 1a,b shows the fault-plane projection of the
Mw 6.4 event (black grid), superimposed is the catalog used by

DC2020 to establish the background b-value (red dots). It is
composed of the 250 events nearest the mainshock since
2000, events up to ∼10 km from the epicenter. Shown in com-
parison is the dataset used by Gulia et al. (2020, blue dots),
composed of events with a maximum distance of 3 km form
the fault plane. DC2020 also used shallow events that are
>3 km from the fault plane and thus not included in the
GW2019 approach. As a consequence of these differences, the
background b-value in DC2020 is 0.90 based on about seven
events above completeness per year and averaged over 19 yr.
Using the GW2019 approach, we compute b � 0:97 based on
about 22 events per year, averaged over 39 yr.

Correctly selecting the mainshock fault plane and
events between the mainshock
Among the two nodal planes defined by the focal mechanism,
GW2019 proposed to use the one with the highest number of
immediate aftershocks within 3 km of the fault because the
method needs to run fully automatically and in near-real time.
For the 31 sequences analyzed by Gulia et al. (2018) as well as for
the three sequences analyzed in GW2019, we determined the
mainshock plane based on the first 24 hr of aftershock data.
This is a commonly used time interval sufficiently long to allow
for stable detection of the active fault in most cases (see also
Kanamori, 1977); however, we did not explicitly document this
choice in GW2019. DC2020 decided to use a much shorter time
interval of only 1 hr to establish the mainshock fault, resulting as
explained later in the choice of the alternative fault plane.

The initial Mw 6.4 Ridgecrest mainshock was a complex
rupture, and it took several days before geodetic, seismic,
and relocated seismicity data provided a reliable view of this
complex sequence. Ross et al. (2019) identified three simulta-
neous subevents and hypothesized that the rupture had been a
cascading phenomenon. The purely statistical method used in
GW2019 based on the first 24 hr of aftershocks selected the
northwest-trending fault plane that represented the initial rup-
ture (Fig. 1d, blue symbols). DC2020, on the contrary, selected
the orthogonal plane (Fig. 1d, red dots). Given the complex
rupture pattern, both choices are actually defendable.
Deviations 1.1 and 1.2 apply on top for this part of the analysis.
In addition, DC2020 did not limit the depth of selected events.

Deviation 2.1: DC2020 selected aftershock of the first hour
rather than the first 24 hr to define the active fault. They thus
selected the alternative fault plane for estimating the b-values
of the aftershocks after the first mainshock.

Deviation 2.2: DC2020 do not limit the analysis to events
with 3 km depth below and above the fault plane but extend
the sampling down to 20 km.

As a consequence of these deviations, DC2020 compute on
the alternative nodal plane a b-value for all the in-between
events of b � 0:83, whereas Gulia et al. (2020) compute
b � 0:74, based on a much larger data sets because of the lower
Mc (Fig. 1e). Despite these five deviations, the overall result of
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Figure 1. (a,b) Map of Ridgecrest region. Shown are the selected
mainshock plane of the 4 July 2019Mw 6.4 mainshock (black grid)
and the selected background seismicity by Dascher-Cousineau
et al. (2020, DC2020) (red dots) and by GW2020 (blue dots).
(c) Annualized frequency–magnitude distribution (FMD) for the

two datasets shown in panels (a,b). (d,e) Map of Ridgecrest region.
Shown are the selected mainshock plane of the 4 July 2019
Mw 6.4 mainshock (black grid) and the selected “in-between”
events by DC2020 (red dots) and by GW2020 (blue dots).
(f) Annualized FMD for the two datasets show in panels (d,e).

Volume 92 • Number 5 • September 2021 • www.srl-online.org Seismological Research Letters 3253

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/92/5/3251/5390782/srl-2020428.1.pdf
by Universita di Bologna user
on 02 August 2022



the FTLS assessment given by DC2020 remains unchanged: a
red FTLS setting.

Correctly selecting the second mainshock fault
plane, the new reference background, and
aftershocks
According to the FTLS model, after a second and larger main-
shock occurs as part of a sequence, the FTLS assessment process
restarts: first, the new fault plane is determined based on the
seismicity within 24 hr of this mainshock. Next, the background
b-value is redetermined based on events within 3 km of this
longer fault plane and then compared with the b-values of the
aftershocks near the new fault to estimate the new FTLS status.
This is typically the most data-rich part of the analysis because it
involves larger fault areas and numerous aftershocks. Here,
DC2020 also apply the deviations D1.1 (start date, 2000), D1.2
(Mc double counted for the background), and D1.3 (circular
sampling instead of along the fault plane), but the resulting
impact is much bigger because the Mw 7.1 fault is considerably
longer.

Deviation 3.1: To establish the reference b-value for the
Mw 7.1 fault, DC2020 sample events in circular region of
∼3 km around the epicenter, but Gulia et al. (2020) use events
in a box within 3 km of the about 60-km-long rupture plane.

As shown in Figure 2a, DC2020 select events that only cover
a small subset of the fault, ∼10%; added to this is the higherMc

and shorter catalog duration. The background b-value estima-
tion of DC2020 thus is based only on about 1% of the data used
by the GW2019 approach (Fig. 3c). As a consequence, the
background b-value for the second event established by
DC2020 is not unexpectedly very different from the one the
GW2019 approach will compute (Fig. 2c): DC2020 estimate
b � 1:10, and Gulia et al. (2020) estimate b � 0:87. The fre-
quency–magnitude distribution (FMD) of DC2020, being

based on a small data set, shows a substantial break in slope
around magnitude 3 (Fig. 2c, red symbols). This difference in
background b-value then results in very different changes in
percent compared with the aftershock b-values and ultimately
results in the difference in the FTLS setting observed between
DC2020 and Gulia et al. (2020).

For the computation of the b-values of the aftershocks,
DC2020 then correctly use events within 3 km of the mainshock
fault (Fig. 2d,e), although deviations 1.2 and 2.2 still apply.
However, although the absolute aftershock b-values are quite
similar between the two articles, the all-important changes in
percent normalized to the background b-values are very different
(−10% for DC2020 à orange alert; +26% for Gulia et al., 2020 à
green alert), largely because of the different background b-values
that they are normalized to (b � 1:10 vs. b � 0:87).

Because there are at least six substantial deviations from the
GW2019 approach, it is no surprise that Gulia et al. (2020)
report quite different results from DC2020 for the Ridgecrest
sequence. We will discuss the appropriateness of these
deviations and the meaningfulness of the comparison, given
these deviations in the Discussions and Conclusions section.

Puerto Rico Case Study
The second case study discussed by DC2020 is the 7 January
2020 Puerto Rico event: DC2020 reported a red alert after the

Figure 2. (a,b) Seismicity maps showing the fault plane (in black)
and the events preceding the 6 July 2019 Mw 7.1 event selected
by DC2020 (red dots) and by GW2020 (blue dots). (c) The relative
FMD for the two datasets in panels (a,b). (d,e) Seismicity maps
showing the fault plane (in black) and the events following the
2019 Mw 7.1 event selected by DC2020 (red dots) and by
GW2020 (blue dots).
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mainshocks, indicating an upcoming larger event, which has
not yet occurred on 24 February 2020 (and not until 19
December 2020), thus suggesting a false positive for the FTLS
evaluation. As DC2020 themselves state, this case is not an
actual test of the GW2019 hypothesis:

For the source region surrounding this event used for
computing a b-value, we relax the nominal spatial win-
dow of 3 km from the source to 10 km to determine stable
b-values. For this reason, the time series produced for the
Mw 5.0 foreshock is not a strict test of the method
proposed by Gulia and Wiemer (2019) but is nonetheless
inter- interesting to consider.

We add to this statement:

1. in, we explicitly exclude from the test offshore sequences
because hypocenter accuracy and completeness are inevi-
tably much inferior. In our assessment, the quality of off-
shore catalogs is typically too low to allow to select enough
earthquakes near the rupture plane and with sufficient
confidence.

2. DC2020 performed a time series on anMw 5, a much lower
magnitude than the minimum one (Mw 6) required for

the model of GW2019. Because stress changes scale with
magnitude, we have argued in Gulia et al (2018) that to
apply the method to smaller magnitudes, only events close
by should be considered (e.g., within 1 km of an Mw 5
earthquake).

Even though DC2020 in the Puerto Rico study did not test
the GW2019 hypothesis in the first place, we also like to point
out that their analysis is, in our opinion, flawed or biased.
Data-quality issues related to the homogeneity of the estimate
magnitudes across the magnitude scale were not considered,
leading to arbitrary estimates of b-values, as explained next.

In a first step, we evaluated the FTLS method on theMw 6.4
mainshock using the original published and unchanged method
and selection criteria by GW2019 and the same catalog of the
Puerto Rico National Seismic Network used also by DC2020
(although we could not check if it had been updated in between
downloads). We select events within a 3 km distance from the
fault plane of the Mw 6.4 event, applying a preliminary magni-
tude cutoff at a minimum level of completeness (here 2:3� 0:2
correction factor). The results obtained without any modifica-
tions in the released code are shown in Figure 3. In our analysis
of theMw 6.4 event, the b-value increases by 30% after the main-
shock, resulting in a green alert. The Puerto Rico sequence
would thus represent an additional and further positive test
of the GW2019 hypothesis; however, as explained later, the
quality check applied in GW2019 estimates the FMDs not
reliable enough to consider this a successful case study.

The challenge with magnitude-scale reporting homogeneity
of the Puerto Rico catalog is illustrated in Figure 4, in which we
show the overall b-value of earthquakes within ∼50 km from
the island of Puerto Rico for the period 2003–2019, plotted as a
function of cutoff magnitude (red curve). This kind of plot is a
simple check for both Mc and the homogeneity of reporting
(Wiemer and Wyss, 2000; Woessner and Wiemer, 2005). The
expected behavior is that the b-value is strongly underesti-
mated as long as the catalog is incomplete, and when Mc is
approached, the b-value levels of and a plateau emerge. The
plots for the Puerto Rico catalog reveal no such plateau
(the ones for Ridgecrest, e.g., do). Instead, it signals a very high
sensitivity of b-values to the choice of Mc, with b-values rang-
ing from <1:0 to 1.6, depending on the choice of Mc. Similar
behavior is found for the Mw 6.4 mainshock region analyzing
the 2020 data only (blue line in Fig. 4). Such a peak rather than
a plateau is indicative of an upward bend of the FMD, typical,
for example, if different procedures are used to estimate
magnitudes in different magnitude bins.

The impact of this magnitude-scale compression on the
FMD near the mainshocks is shown in Figure 4b. We selected
events within 3 km distance of the Mw 6.4 mainshock fault.
The resulting FMD does not only look nonlinear to the eye,
but it also does not pass the nonlinearity filter (Tormann et al.,
2014) that we apply as a quality check in GW2019 to ensure

Figure 3. (a,b) Performance of the foreshock traffic-light system
(FTLS) for the Mw 6.4 Puerto Rico event. (a) FMDs for the source of
the Mw 6.4 event for two time periods: background in blue and
maximum b-value reached in the first weeks of aftershocks. (b) b-
value time series for the Mw 6.4. The blue-dashed line is the
reference b-value, and the red-dashed vertical line indicates the time
of theMw 6.4 event. All the estimates are above the reference value.
BK-AFT, Background-Aftershocks; TLS, terrestrial laser scanning.
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compliance with a linear power-law model. The substantial
“kink” in the distribution around magnitude 3.0–3.5 leads
to the aforementioned strong sensitivity of the background
b-value on the choice of Mc. Figure 4 implies that a stable
b-value analysis may only be possible from about magnitude
4.0, but then almost no data would be left for analysis.

The main difference between our analysis and the one by
DC2020 lies in the b-values of the aftershock sequence, and it
is ultimately related to the aforementioned data-quality issue.
For the background, DC2020 compute a rather high b-value
(b � 1:2) compared with our analysis (b � 0:87). This is not
only a consequence of different sampling volumes (large circles
vs. fault plane) but also a result of the “upward” bend of the FMD
for events below magnitude 3. DC2020 use a much lower Mc

here (about 2.0); we would useMc � 2:5. DC2020 then compute
an aftershock b-value of ∼0:5–0:6 (their fig. 3). Our analysis,
shown in Figure 3, results in b � 1:1. We cannot fully explain
how DC2020 obtain such an unusual low b-value, and we note
that their FMD does not fit the data for most of the range—too
low for small magnitudes yet too high for larger ones (Fig. 4b).

We recognize that the dependence on the two free param-
eters of our analysis, the no-alert time and the magnitude of
completeness, is potentially creating an arbitrariness in the
analysis. To address this limitation, we introduced in Gulia
et al. (2020) a systematic scan of the free parameter space to
assess the robustness of the analysis. We repeated the analysis
for the Puerto Rico case. If the Mc of the aftershocks is below
completeness, then b-values are much too low, and an
erroneous red alert is found. WhenMc is high enough, and for
all possible constellations ofMc and no-alert time, a green alert
after the Mw 6.4 results.

Discussions and Conclusions
Testing earthquake forecasts in rigorous ways is highly
important and the past 40 yr of research have seen a rather
spotty record of the seismology community on testing
(Jordan, 2006; Jackson, 1996; Kagan, 1999; Zechar et al.,
2016). One of the challenges is that often the models are a
moving target. There is a broad consensus in the community
(e.g., Jordan, 2006; Zechar et al., 2011; Marzocchi et al., 2015;
Strader et al., 2017; Schorlemmer et al., 2018) that prospec-
tive and pseudoprospective testing in earthquake sciences
(no different from medicine or other sciences) must follow
strict rules, and community efforts such as Collaboratory for
the Study of Earthquake Predictability (CSEP) have been cre-
ated for this purpose (e.g., Gerstenberger and Rhoades, 2010;
Werner et al., 2010; Zechar et al., 2010, 2013; Tsuruoka
et al., 2012).

One of the most fundamental rules for evaluating hypoth-
eses in science is that the hypothesis to be tested cannot be
changed arbitrarily; otherwise, biases (in favor or against a
hypothesis) are likely to influence the test and endless discus-
sion may occur. Another basic rule of science is the fact that
quality limitation of the data must be accepted and respected
even if we do not like them. Otherwise, the “garbage in, garbage
out” criteria will almost inevitably apply.

Figure 4. (a) b-value as a function of magnitude of completeness
for the Puerto Rico catalog, for the periods 2003–2019 (red) and
2020 (blue). (b) Annualized FMD of the background (blue circles)
at two different magnitude of completeness and relative b-values
for the Mw 6.4 event dataset.
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The study by DC2020 has violated these two basic rules of
hypothesis testing in several respects, biasing their analysis
against the GW2019 hypothesis. We demonstrate here and
in Gulia et al. (2020) that, when applied correctly, the
Ridgecrest cases study would be fully in line with the FTLS
hypothesis. DC2020 have deviated in at least six steps from
the analysis; these are in parts major deviations, changing
by 99% the data to be analyzed. As much as we appreciate that
DC2020 evaluated our hypothesis, in our opinion, this test is
meaningless or misleading because the method and data
processing of DC2020 are substantially different. DC2020,
therefore, test their own hypothesis, not ours, but they do not
state so in their article. We consider this confusing for the com-
munity, and we even pointed out some of these shortcomings
to the authors in a review before publication.

One might argue that a method or hypothesis should be
robust enough to also work with somewhat modified param-
eters as a measure of robustness, a point raised by DC2020. We
respond first of all that even before such a useful sensitivity
analysis, one obviously needs to test the actual unmodified
hypothesis and also document the changes transparently.
However, much more important is in our view that the devia-
tions applied by DC2020 are unjustified in several ways:

• The deviations violate the physical framework of GW2019.
we consider it critically important and physically plausible
to sample events in the immediate vicinity of the actual fault
plane because stress changes caused by the mainshock are
strongest here.

• The deviations violate the statical framework of GW2019 that
aims to maximize the amount of data and hence robustness of
the analysis. Instead, DC2020 use only a small fraction of the
data available for no apparent reason (Figs. 1 and 2).

• The deviations violate the principle of reproducibility because
they are not documented and possibly not intended modi-
fications (e.g., all depth selected,Mc add on double counted).

The Puerto Rico case is more complex to interpret. Both
groups agree that this case study does not represent a test
of the GW2019 hypothesis in the first place. However, in addi-
tion, here DC2020 introduced inconsistencies in the analysis,
in part possibly because of the same deviations stated here for
Ridgecrest but even more so by ignoring the limitations of the
data as well as the minimum required magnitude (Mw 6) to
implement GW2019. Redoing the analysis using the original
GW2019 approach with no modifications, we find also that
this case would support the FTLS hypothesis (Fig. 3).
Nevertheless, we argue that the offshore data quality is too
poor, and the magnitude scale shows unexplained bends
(Fig. 4) to allow for robust analysis. The automatic procedures
for quality control in GW2019 would reject this case also.

Every forecast model has several free parameters. Some are
obvious, first-order free parameters, such as the sample sizes

used or the width of the volume sampled; these can be readily
analyzed in a sensitivity analysis. Some are related to the auto-
mated quality analysis, such as the determination of Mc, and
here the uncertainty in Mc determination can be used to esti-
mate sensitivity. A third set of “free” parameters are resulting
from expert choices based, for example, on data quality, such as
the start time of the catalog or the fault plane used. In Gulia
et al. (2020), we explore some of the free parameter space, con-
firming the robustness of the FTLS model to first-order free
parameters, but a complete search of the free parameter space
is difficult. It would require a logic-tree approach such as the
ones used in probabilistic seismic hazard assessment, capturing
aleatory and epistemic uncertainties. In forecast, the preferred
method instead is to perform fully prospective test of models
under controlled conditions and against predefined, authorita-
tive data sources (e.g., Schorlemmer et al., 2018). The GW2019
hypothesis may well fail such a test, but it deserves to be tested
fairly. DC2020 did in our assessment, unfortunately, not
conduct such a fair test of the actual hypothesis, nor did they
perform a systematic sensitivity test.

Final Comment after Reading the Reply
by the Authors
We carefully read the reply by Dascher-Cousineau et al. (2021)
to our comment and thank the authors for the detailed discus-
sion as well as the clarifications and corrections applied to their
analysis. We still believe that all deviations we listed in our
comment are correctly identified and justified. The aim of
Gulia et al. (2020) was to implement the published FTLS
without any modifications, and this is what we did.

As stated before in our comment, we welcome the indepen-
dent evaluation of the FTLS by DC2020 and welcome their
response to our criticisms raised. Details matter in science,
and we are struck again how difficult it is in earthquake forecast-
ing to not only ensure full reproducibility but to also write down
a “recipe” that other qualified scientists can apply to new cases
and reach the same conclusions. Cooking is a good analog: even
a detailed recipe will not ensure the same outcome. For evalu-
ating earthquake forecasting–related hypotheses, our experience
documented in the article and replies also highlight the need for a
collaborative and fully prospective testing environment such as
the one provided by CSEP, with community-agreed rules and
decoupling between modelers and evaluators.

Data and Resources
Data about Ridgecrest events are available from the Advanced National
Seismic System (ANSS) Comprehensive Earthquake Catalog (ComCat)
and Shelly (2020, SRL), and data about Puerto Rico events are available
from the Puerto Rico Seismic Network. Data about European Real-time
earthquake rIsk reduction for a reSilient Europe (RISE) project are
available at www.rise-eu.org. Both figures and calculations were
performed by MATLAB (www.mathworks.com/products/matlab). All
websites were last accessed in October 2019.
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Supplemental Material

TheMw 7.1 Ridgecrest earthquake sequence in California in July 2019 offered an oppor-
tunity to evaluate in near-real time the temporal and spatial variations in the average
earthquake size distribution (the b-value) and the performance of the newly introduced
foreshock traffic-light system. In normally decaying aftershock sequences, in the past
studies, the b-value of the aftershocks was found, on average, to be 10%–30% higher
than the background b-value. A drop of 10% or more in “aftershock” b-values was
postulated to indicate that the region is still highly stressed and that a subsequent
larger event is likely. In this Ridgecrest case study, after analyzing the magnitude of
completeness of the sequences, we find that the quality of the monitoring network
is excellent, which allows us to determine reliable b-values over a large range of mag-
nitudes within hours of the two mainshocks. We then find that in the hours after the
first Mw 6.4 Ridgecrest event, the b-value drops by 23% on average, compared to the
background value, triggering a red foreshock traffic light. Spatially mapping the
changes in b values, we identify an area to the north of the rupture plane as the most
likely location of a subsequent event. After the second, magnitude 7.1 mainshock,
which did occur in that location as anticipated, the b-value increased by 26% over
the background value, triggering a green traffic light. Finally, comparing the 2019
sequence with the Mw 5.8 sequence in 1995, in which no mainshock followed, we find
a b-value increase of 29% after the mainshock. Our results suggest that the real-time
monitoring of b-values is feasible in California and may add important information for
aftershock hazard assessment.

Introduction
It is well known and almost universally observed that the stress
changes caused by a major earthquake strongly affect seismic
activity in the vicinity, and the rate of earthquakes increases
near the mainshock rupture by several orders of magnitude
(Okada, 1992; Stein, 1999; Ebel et al., 2000). In most sequences,
on average, this aftershock activity then decays exponentially
back to the previous background rate (e.g., Reasenberg and
Jones, 1990), a process first described by Omori (1895) and
nowadays often described with reference to the concept of epi-
demic-type aftershock sequences (ETASs; Ogata, 1988). This
systematic aftershock behavior can be satisfactorily explained
and well modeled using models combining coulomb stress
changes and rate and state friction (Dieterich et al., 2000; Toda
and Stein, 2003). It also constitutes the baseline of probabilistic
assessments of aftershock probabilities (e.g., Reasenberg and
Jones, 1990; Marzocchi et al., 2017; Omi et al., 2019).

Today, the term operational earthquake forecasting (OEF) is
often used when referring to aftershock forecasting in near-real
time (Jordan et al., 2014; Zechar et al., 2016).

Far less well established and not currently used in OEF is
the fact that the stress redistribution caused by a mainshock
also systematically influences relative earthquake size distribu-
tion, the b-value of the Gutenberg and Richter relationship
(Ishimoto and Iida, 1939; Gutenberg and Richter, 1944).
Laboratory measurements taken since the 1960s have established
that b-values are sensitive to stress (Scholz, 1968; Amitrano,
2003; Goebel et al., 2013), and this inverse dependency of b-value
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and the applied stress is fully consistent with a number of
observed b-value variations with depth, faulting style, and the
loading state of faults (e.g., Narteau et al., 2009; Gulia and
Wiemer, 2010; Scholz, 2015; Tormann et al., 2015; Petruccelli,
Gasperini, et al., 2019; Petruccelli, Schorlemmer, et al., 2019;
Staudenmaier et al., 2019;). Mainshock stress changes are
therefore expected to systemically change b-values, as sug-
gested by a number of case studies (Wiemer and Katsumata,
1999; Wiemer and Wyss, 2000; Enescu and Ito, 2003). Just
recently, Gulia et al. (2018) confirmed this hypothesis in a sys-
tematic study. To establish generic b-value behaviors in after-
shock sequences, they applied a stacking approach to 31 high-
quality aftershock sequences from California, Japan, Italy, and
Alaska and demonstrated that the b-values of those sequences
generically increase by 20% after the mainshock. The higher b-
value results suggest a far lower probability of a subsequent
large event. Gulia et al. (2018) also presented a model based
on coulomb stress changes that explains the observations and
the observed dependencies on distance, magnitude, and fault-
ing style.

Based on these findings, Gulia and Wiemer (2019) postu-
lated the hypothesis that sequences in which the b-value of the
aftershock decreased by 10% or more, instead of increasing as
expected, would indicate that a bigger event was not yet to
occur. The authors then extended their b-value analysis by suc-
cessfully testing this hypothesis on three sequences in which a
secondary larger mainshock occurred and proposed a fore-
shock traffic-light system (FTLS), which, taking b-value evolu-
tion over time as an indicator of the average stress condition of
faults in a region, defines three alert (or concern) levels that can
be used to determine in near-real time whether an ongoing
sequence is likely. The lowest, “green” alert is triggered by a
normally decaying aftershock sequence (b-value increases by
10% or more). The highest, “red” alert indicates a precursory
sequence that is more likely to be followed by a larger event
(b-value decreases by 10% or more). Sequences falling bet-
ween these extremes trigger “orange” alerts. Gulia and Wiemer
(2019) tested the FTLS on 58 sequences and found it to be
more than 95% accurate. Differential b-value maps are pro-
posed as an additional step to estimate the likely location of
subsequent larger events. The FTLS is thus proposed as a tool
for real-time discrimination between foreshocks and after-
shocks, but the authors also point out that additional, ideally
fully prospective tests are needed before FTLS can be used in
OEF systems.

Key to the robustness of b-value-based forecast is a
correct assessment of the completeness of reporting, Mc,
for this variable fluctuates dramatically during aftershock
sequences (Woessner and Wiemer, 2005; Helmstetter et al.,
2006; Hainzl, 2016). In the past, it often took weeks or even
years to postprocess the rich catalogs of aftershock sequences
to make them fully useful for statistical seismology.
Consequently, another objective of our study is to investigate

the reliability of assessed statistical parameters of aftershock
sequences in the light of improved modern-day network-
processing capabilities and automation. A further, related
objective is to analyze whether high precision and more com-
plete datasets based on cross correlation, provided by Shelly
(2020), can improve the reliability and lower the latency of
aftershock forecasting. We also investigate another potential
limitation of near-real-time application, the availability of
reliable focal mechanism data.

In many ways, the Ridgecrest sequence is an ideal case study
for investigating the effects of mainshock on the size distribu-
tion of aftershocks, and our study is the first prospective evalu-
ation of the FTLS as a purely data-driven decision support
system. Finally, we discuss the implications of our analysis
for aftershock hazard assessment.

The 2019 Mw 7.1 Ridgecrest Sequence
On the morning of 4 July (at 17:33 UTC time), an Mw 6.4
earthquake hit eastern California in the Mojave Desert
(Ross et al., 2019), injuring about 20 people and damaging
numerous buildings in the Ridgecrest area (see Data and
Resources). Over the past 40 years, this part of southern
California has experienced several moderate earthquakes,
the largest being the 20 September 1995 Mw 5.8 event, about
13 km away from the Mw 6.4 event.

The earthquakes following the Mw 6.4 quake outline two
lineaments: one southwest–northeast and the other north-
west–southeast, on an unmapped fault, exhibiting a distinctive
“T” pattern created by the simultaneous activation of two or
more faults (Hobbs, 2019; Ross et al., 2019). During the hours
after the mainshock, the U.S. Geological Survey (USGS) seis-
mologists estimated in near-real-time probabilities of after-
shocks and subsequent mainshocks, using in essence the
Reasenberg and Jones (1990) approach (see Data and
Resources). Immediately after the mainshocks, this model esti-
mated the weekly probability of one quake being followed by a
second mainshock of equal or larger magnitude at about 9%
(Hardebeck et al., 2019; Michael et al., 2020). This figure
was higher than the default value of 5% obtained when using
the standard Reasenberg and Jones (1990) parameter, because
of the higher than average aftershock productivity in the region
(Hardebeck et al., 2019). Just one day later, an Mw 7.1 earth-
quake struck (at 8:20 p.m. local time on 6 July or 03:20 UTC) at
a distance of about 7 km.

The aforementioned probabilities of a subsequent larger
earthquake occurring, as is common in California, were also
cited in public. For example, after the second event Lucy Jones
tweeted: “So theM 6.4 was a foreshock. This was aM 7.1 on the
same fault as has been producing the Searles Valley sequence.
This is part of the same sequence.” This was followed by:
“You know we say 1 in 20 chance that an earthquake will
be followed by something bigger? This is that 1 in 20 time.”
And then: Yes, we estimate that there’s about a 1 in 10 chance
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that Searles Valley will see anotherM 7. That is a 9 in 10 chance
that tonight’s M 7.1 was the largest.”

Here, we monitor fluctuating b-values and apply the FTLS
in a near real-time application, comparing the FTLS forecast
with currently used aftershock probabilities for California.
We then compare the FTLS’s performance with preliminary,
revised, and high-resolution datasets. A key aim in our
research was to evaluate the feasibility of using b-value fluctu-
ations for real-time hazard assessment.

Data and Method
To compute a reliable and detailed b-value time series, we used
a window approach, moving a window with a fixed sample
size, event by event. To provide a prospective evaluation, the
method strictly adheres to the approach used by Gulia and
Wiemer (2019; in review before the Ridgecrest mainshocks).
The codes used can be downloaded from the ETH Zurich
website (see Data and Resources). Here is a brief description
of the approach and sequence-specific aspects. Using the quick
focal mechanism of the Mw 6.4 (Global Centroid Moment
Tensor [Global CMT], Dziewonski et al., 1981; Ekström et al.,
2012) and theWells and Coppersmith relationships (Wells and
Coppersmith, 1994) corresponding to the tectonic style of the
event strike slip, we built two possible fault planes, with a 1 km
spaced grid. To decide quickly and automatically, which was
the most likely fault plane, we selected all events recorded in
the sequences within the first hour and within a radius of 3 km
from each grid point of the fault plane (from now on, the box),
then selected the plane in which most of the aftershocks
occurred. Although more sophisticated rupture planes using
multiple fault segments, among other things, are often avail-
able for larger events within days, we opted to apply a simple,
quick, and robust approach that will facilitate independent
testing as well as real-time application. We divided the dataset
into two parts: a pre- and postinitiating event catalog. The
start time of the precatalog depended on the quality and com-
pleteness of the local network: for the Californian seismicity,
we downloaded from the Advanced National Seismic System
Comprehensive Earthquake Catalog (ComCat) via the Interna-
tional Federation of Digital Seismograph Networks webservice
(see Data and Resources); we started the analysis of the back-
ground seismicity from 1981, when the network was greatly
improved. The data were first downloaded on 14 July 2019
and then updated week by week.

The computation of b-values critically depends on correct
estimates of the magnitude of completeness (Mc) (e.g., Mignan
and Woessner, 2012). A specific Mc was assessed for each win-
dow (250 event long) after a precutting level, established using the
maximum curvature method with a correction factor of 0.2
(Wiemer andWyss, 2000). A b-value was then calculated for each
window, applying the maximum-likelihood method (Aki, 1965).
We then defined a pre-event reference b-value, which was the
median of all the single estimates preceding the Mw 6.4.

For the postevent catalog processing, we had to consider the
temporal changes of the magnitude of completeness following
a big event (Helmstetter et al., 2006; Tormann et al., 2013),
which can easily mask or bias the space–time b-value fluctua-
tions. During the first hours after a large event, Mc typically
changes by two orders of magnitude, resulting in a somewhat
heterogeneous dataset. Changes in completeness are not only
network specific, but also depend on mainshock magnitude
(Helmstetter et al., 2006). Our analysis of Ridgecrest’s com-
pleteness (Fig. 1) was fully consistent with previous experience,
since Mc increased much more and over a longer time span
after the Mw 7.1 than after the Mw 6.4 event. Specifically, after
the Mw 6.4 Mc increased from the background value
(Mc � 1:2) to about 1.8, before dropping back to a near-
to-background value within 12 hr. After the Mw 7.1 event,
it increased to between 3.3 and 3.5, then recovered within three
days to near-to-background values.

Although we subsequently estimated Mc in each sample
before computing a- and b-values, a common observation is
that during periods of very strong gradients the Mc estimate is
not conservative enough (e.g., Woessner and Wiemer, 2005),
which potentially biases the analysis toward lower b-values.
Based on ourMc analysis (see Fig. 1), typically in keeping with
such an analysis (e.g., Gulia et al., 2018), we therefore excluded
from the dataset those events recorded during the initial, most
heterogeneous period after the Mw 6.4 and Mw 7.1 events, and
introduced a minimum cutoff magnitude. In the aftermath of
theMw 6.4, we excluded events occurring during the first 12 hr
and precut the dataset at M 1.7. For the Mw 7.1, we removed
events occurring during the first 48 hr and precut atM 1.2 (see
the shaded areas in Fig. 1). This “no-alert-time” is certainly one
of the limitations affecting the method’s practical application:
for the shorter this no-alert-time is, the more use FTLS deci-
sion support can be for practical mitigating actions. We sub-
sequently tested the choice of these expert-selected parameters
for sensitivity and confirmed that they did not critically influ-
ence our results. Subsequently, we also used an alternative,
revised, and higher-resolution dataset (Shelly, 2020) to chal-
lenge and refine our analysis. Computing the percentage differ-
ence compared to the reference b-value was the final step. The
values thus obtained allowed us to define the level of alert. If
the percentage difference of the post-Mw 6.4 event was �10%,
the alert was designated green or red, otherwise it was classified
as orange.

Figure 2 schematically illustrates schematically the process
of constructing b-value time series and FTLS values for the
Ridgecrest earthquake sequence. This figure contains the
b-value difference in percentage respect to the reference value
to allow comparison between the two fault planes. After the
occurrence of the first event with M greater or equal than
6, we calculate the b-value time series on its box, as explained
in the previous lines, till the occurrence of a bigger event (step 1
in Fig. 2). Once a larger event occurs, we automatically refocus
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the analysis of b-value changes and FTLS on this new event,
using the same procedures: We reselect the fault plane with
the highest number of early aftershocks, reselect a new dataset,
and finally rerun the code that estimates the background
b-value (note from 1981 to theM 64, only, excluding the after-
shocks and mainshocks of the first sequence) and aftershock
b-values (step 2 in Fig. 2). We normalize always the b-values
relative to the background value, allowing for comparisons
between different sequences in one timeline (Fig. 2b) and refo-
cusing on the new. Larger fault area is sensible, since the stress
changes introduced by this event (larger and more recent) will

dominate the changes in seis-
micity; this is now also the area
of highest concern for larger
events and the area with the
most seismicity for analysis. In
essence, all steps are automated
and follow the procedure by
Gulia and Wiemer (2019), the
only “free” parameter is the
starting date of the background
b-value analysis (here, 1981).

Mapping of b-values to pro-
vide additional information on
spatial changes was performed
on a regular 1 × 1 km grid,
selecting the closest 200 events
within a maximum radius of
10 km. For the time series, we
used the maximum curvature
method (Wiemer and Wyss,
2000) for Mc, after precutting
the dataset at the sameMc level
already adopted for the pre and
post time period. We plotted
the percentage difference of
the post Mw ≥ 6 events with
respect to the b-value map
obtained for the background
(i.e., the time span from 1981
up to the last event preceding
the Mw 6.4).

The subcatalogs generated
for each fault plane and for the
three different catalogs are pro-
vided as text files in the supple-
mental material available to
this article.

Results
Automatic fault selection
The 4 July Mw 6.4 Ridgecrest
earthquake ruptured two con-

jugate strike-slip faults, which intersected to form a “T” shape.
It took days before geodetic, seismic, and relocated seismicity
data provided an overall view of this complex sequence
(Hobbs, 2019; Ross et al., 2019). By kinematically inverting
for subevents using seismograms from the dense regional seis-
mic network and global seismic stations, Ross et al. (2019)
identified three simultaneous subevents and hypothesized that
the rupture had been a cascading phenomenon, rather than
a single continuous process. The three identified subevents
coincided with at least three faults: the 6 km long northwest-
trending fault that slipped first; then, the rupture propagated

Figure 1. (a) Time-magnitude plot for the events following the 4 JulyMw 6.4. Shaded areas indicate
times when the dataset was least complete. (b) Time series of the magnitude of completeness (red
lines) estimated using the maximum curvature method for samples containing 300 events, moved
through the data in overlapping windows. Gray lines represent uncertainty estimates obtained by
bootstrapping.
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over a short southwest-trending fault with only about 5 km
of surface break, and finally the jump to a larger southwest-
trending fault roughly 15 km long (Ross et al., 2019).

The FTLS method was developed to be applied in near-real
time, when both little other information apart from data from
the focal mechanism and the automatically derived network
catalog are known and publicly accessible. The seismic source
used in our analysis is thus represented by a single plane.
Following the method described by Gulia and Wiemer
(2019), once the Global CMT provided the focal mechanism,
the algorithm built the two fault planes, centered on the local
hypocenter catalog (see Data and Resources). Between the two
fault planes, the one with the largest number of early after-
shocks within a 3 km radius was selected as the likely fault
plane. For Mw 6.4, this purely statistical method chose the

northwest-trending fault plane
(Fig. 3) that represented the
initial rupture, in the process
described by Ross et al. (2019),
and is the one aligned with the
eventual Mw 7.1 hypocenter.
The background or reference
b-value for this box containing
1275 events above M 1 since
1981 is b � 0:97 (blue symbols
in Fig. 4).

Seismicity preceding
Mw 7.1
Figure 4a shows the b-value
time series. All b-values after
the Mw 6.4 event are sub-
stantially lower than the back-
ground b-value. A comparison
of the frequency–magnitude
distributions (FMDs) of events
occurring between 4 and 6 July
is in Figure 4b. During the time
interval between the two big
events, the b-value decreases
from 0.97 to 0.75, a decrease
by 23%, resulting in a red
Foreshock Traffic Light
System status (Fig. 4b). We
also calculated the respective
daily probability (Pr) com-
monly derived by extrapolating
the observed FMD to an
Mw 6.4 event or larger earth-
quake (Fig. 5c). These proba-
bilities reached a peak value
of 66% on 5 July, a value about
one order of magnitude larger

than the aforementioned ones derived by the USGS (see
Data and Resources; 5% using default values, 9% using
sequence-specific values according to Michael et al., 2020
and Hardebeck et al., 2019).

Next, we mapped the spatial distribution of the differential
b-value (i.e., the background b-value map subtracted from the
current episode map) to infer information on the likely nucle-
ation region of a subsequent mainshock (Fig. 6a). The expect-
ation described by Gulia and Wiemer (2019) is that a
subsequent mainshock would nucleate near the strongest
b-value decrease, in our conceptual model represented by
high-stress asperities. In the case of the Ridgecrest sequence,
this low b-value patch locates to the northwest of the Mw 6.4
epicenter and corresponds closely to the location of the
subsequent 6 July Mw 7.1 (marked in Fig. 6b).

Figure 2. (a) Schematic representation of the single time series obtained on the M 64 and M 7.1
fault planes and (b) the summary one with the two fault planes in the near-real-time analysis of the
Ridgecrest earthquake sequence.
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Seismicity following the
Mw 7.1
We then analyzed b-value evo-
lution over time in the Mw 7.1
source volume, constructed fol-
lowing the same procedure as
described previously for the
Mw 6.4 event. We also deter-
mine a new background b-value
of 0.87 for this much larger
source volume, compared to the
volume of Mw 6.4. The b-value
time series, plotted in Figure 2
and starting two days after the
Mw 7.1 earthquake, indicated
a general increase from the nor-
malized background value of
more than 10%, reaching a peak
of 26% within the first week
(Fig. 2c). This qualified it for
green FTLS status and suggested
that the chance of a subsequent
even larger event was lower
than average. Figure 4c shows
the FMDs of the background
(b � 0:87) compared to the
aftershocks (b � 1:1). We again
calculated the probability of a
subsequent event of equal or
larger magnitude at 0.4% per
day two days after the event
and falling to 0.004% per day
in subsequent weeks. These val-
ues were one order of magni-
tude lower than the USGS
aftershock probabilities com-
municated during the sequence.
The differential b-value map for
events occurring in the first
week with respect to their back-
ground (Fig. 6b) indicated a
general rise in b-values through-
out the region.

Revised and high-
resolution datasets
Although this manuscript was
under review, revised Global
CMT and ComCat catalogs
(downloaded on 21 January
2020) became available, so we
repeated our analysis, to com-
pare it with the performance of

Figure 3. (a) Seismicity map with the events (white stars) on 4 July –Mw 6.4 (M 64), 6 July –Mw 7.1
(M 71) and subsequent events in black and red, respectively. The two green fault planes indicate
the Mw 6.4 Global Centroid Moment Tensor (Global CMT) focal mechanism, with strike and dip
directions. (b) 3D view of panel (a), from a 200° azimuth and 40° elevation.
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FTLS using near-real-time data. The revised Global CMT focal
mechanisms, available online since 8 November 2019, are very
similar to their quick equivalents (Table 1), both in orientation
and dip. We then recomputed the fault planes centered on the
hypocenters of the two mainshocks (Mw 6.4 and Mw 7.1) for
the revised ComCat catalog as well as for the high-resolution
catalog compiled by Shelly (2020).

Minor displacement (by approximately 0.2 km) of the epi-
center of the 4 July mainshock in the revised ComCat catalog
makes the revised boxes imperceptibly different with respect to
their quick counterparts (Table 2). The overall completeness
of the catalogs remains largely unchanged. Consequently,
the result showed the same almost imperceptible difference,
with the overall b-value during the time interval between the
two biggest events rising from 0.75 to 0.76, and the red alert
from −23% to −22%. After the mainshock, we obtained the
same b-values and the same green alert (�26%).

In addition, Shelly (2020) published a revised, higher-reso-
lution catalog containing 34,000 events during the period 4–16
July for the Ridgecrest sequence, allowing us for the first time

Figure 4. Performance of the foreshock traffic-light system (FTLS)
in near-real time. (a) b-value time series for the Mw 7.1 sequence
superimposed on the FTLS assessment (Gulia andWiemer, 2019);
blue dashed line is the reference b-value; black dashed vertical
lines indicate Mw 6.4 and Mw 7.1, respectively. Black rectangle
zooms in on the time series in the interval between the two
M > 6 events. All the estimates are below the reference value.
Gray indicates uncertainty (one standard deviation by Shi and
Bolt, 1982). (b) Frequency-magnitude distributions (FMDs) for the
source of the Mw 6.4 event for two time periods: background in
blue and time between the two Mw > 6 events in red. (c) FMDs
for the source of the Mw 7.1 event for two time periods:
background in blue and maximum b-value reached in the first
week of aftershocks.
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to evaluate the b-value evolution and FTLS performance with a
partially independently calculated and presumably higher
quality dataset. This earthquake catalog is based on cross-cor-
relation analysis of continuous waveforms and according to
Shelly (2020) substantially more complete in magnitude, more
consistent through time, and more precise in hypocenters.
Shelly (2020) points out that cross correlation is not well suited
for relocating M > 5 earthquakes, especially the two events
with the highest magnitudes, because its waveforms are too
dissimilar to those of smaller events. Indeed, in this dataset,
the two epicenters roughly correspond to the location provided
by USGS, albeit having different depths, with the Mw 6.4
deeper (from 10.5 to 15 km) and the Mw 7.1 shallower (from
8 to 3 km). For this reason, we use the same source volumes
determined for the previous analysis (i.e., revised Global CMT
moved to the ComCat hypocenter).

This catalog contains only 38 events preceding the Mw 6.4
quake, not enough to establish a reference b-value for the
FTLS, so we used the revised ComCat catalog to estimate that
value for the boxes of the Mw 6.4 and Mw 7.1 mainshocks. As
shown in Shelly (2020), the cross-correlation analysis substan-
tially lowers these events’ overall magnitude of completeness, a
finding supported by our Mc�t� analysis (Fig. 7). The Shelly
catalog reaches an Mc of about 0.7, roughly half-degree of
magnitude lower than the standard ComCat catalog. However,
the increase in Mc immediately after the mainshock is almost
as high (rising to roughly Mc � 3:0–3:5), but completeness
recovers faster and more systematically. Completeness for
M 1.5 is reached 24 hrs earlier than using standard datasets

(Fig. 7). This improvement is extremely important for our
approach, but also for other real-time methods used to assess
time-dependent earthquake probabilities.

Using the Shelly catalog, we repeated the b-value analysis
using the same time windows but lower completeness and
found almost identical results (−21% after the Mw 6.4 and
�29% after the Mw 7.1), confirming that the results based
on near-real-time data are in line with the more homogeneous,
higher-quality catalog. To exploit the possible improvements
of higher-quality data for aftershock hazard assessment, we
then moved the start of our analysis closer to the mainshock
origin time, thus shortening our no-alert time. After the
Mw 6.4 earthquake, we were able to cut this no-alert time
from 12 hr to just one, and after the Mw 7.1 from 48 to
24 hr (using Mc precuts of 1.5 in both cases). The time series
of b-values is shown in Figure 8. The overall trend, the b-values
themselves, and FTLS status all remain unchanged. However, it
is worth noting that we can establish a low b-value after the
M 6.4, with just 1 hr of no-alert time when high-quality data
is available.

Figure 5. (a)–(f) Daily time series on the fault planes of the two
major events. (a)–(c) Fault plane of theMw 6.4 event: (a) b-value,
(b) daily a-value, and (c) daily probability (Pr) of an Mw 6.4+. (d)–
(f) Fault plane of the Mw 7.1 event: (d) b-value, (e) daily a-value,
and (f) daily Pr of an Mw 6.4+. Blue dashed lines represent the
mean value of all the background estimates.
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Sensitivity analysis
Our method contains essentially three free parameters that we
determined based on data analysis and expert choices: (1) the
magnitude of completeness, (2) the no-alert time, and the
(3) the sample size analyzed. The first two we have determined
based on the completeness analysis (Figs. 1 and 6), and the last is
a commonly used value in studies. We introduce a novel sensi-
tivity analysis to evaluate the impact of the changes on the
result of our study. We scan systematically the parameter space
of the precut Mc and no-alert time parameters. The results
shown in Figure 9 for the revised ComCat and the Shelly catalog

are fully consistent with the
previous interpretations: For
all choices of Mc and no-alter
times, there is a string decrease
in b-value (red colors and red
FTLS status) subsequent to
the M 6.4. Following the M 7.1,
the picture is somewhat differ-
ent: for value at or below the
estimated completeness (black
dashed line in Fig. 9), there
is decrease in b-value—an
expectedbiasdue to incomplete-
ness. AboveMc, however, green
colors indicate an increase in
b-value and green FTLS status.

Seismic sequence in 1995
In 1995, an Mw 5.8 earthquake
occurred in the same region, a
few kilometers away from the
Mw 7.1 (Fig. 3a). That event
was not followed by a larger
one. For comparison, we also
applied the FTLS approach to
this sequence, too. Figure 10
shows the FMDs and time
series relative to the 1995
sequence, indicating a roughly

30% increase in the b-value, resulting in a correct green traffic-
light classification. This result suggests that the FTLS approach
can also be extended to events of smaller magnitude than the
currently used Mw ≥ 6:0 reference.

Discussion and Conclusion
Our analysis shows that the Ridgecrest earthquake sequence
not only impacted the seismic activity rate, increasing the pro-
ductivity of earthquakes near the fault by between 3 and 5
orders of magnitude, but also changed the relative size distri-
butions and the b-values, in both space and time. This should

Figure 6. Mapped b-values with the difference in percentage with respect to the background for
two different periods: (a) betweenMw 6.4 andMw 7.1; (b) the first week afterMw 7.1. The original
maps were produced by ZMAP (Wiemer, 2001; Reyes andWiemer, 2019) and postprocessed in the
MATLAB using Generic Mapping Tools (GMT; see Data and Resources). Black star:M 6.4 epicenter;
red star: M 7.1 epicenter.

TABLE 1
Nodal Planes (np1 and 2) of the Quick and Revised Global Centroid Moment Tensor (Global CMT) Catalog for the
Two Events on 4 July 2019, 17:33 UTC (Day 04) and 6 July 2019, 03:19 UTC (Day 06)

Global CMT Day Strike np1 Dip np1 Rake np1 Strike np2 Dip np2 Rake np2 Length (km) Width (km)

Quick 04 228 81 0 318 90 −171 27.28 9.65

06 322 78 −177 231 87 −12 61.9 13.79

Revised 04 227 86 3 137 87 176 26.84 9.58

06 321 81 180 51 90 9 61.3 13.73
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come as no surprise, since the size distribution is known to be
sensitive to the applied shear stress on faults (e.g., Goebel et al.,
2013) and also to depend on location (e.g., Tormann et al.,
2015). Thus, b-values are not only linked to the seismotectonic
context and evolution of events, but they also constitute an
important factor influencing the probability of a subsequent
larger event. The FTLS concept introduced by Gulia and
Wiemer (2019) exploits the systematic differences in b-values
observed between the majority of aftershock sequences that will
normally decay over time and the small percentage of sequences
that are followed by an even larger event. The FTLS method and
codes were developed in the first half of 2019, but only published
in October 2019 (Gulia and Wiemer, 2019). The Ridgecrest
sequence, representing one of the best-monitored large main-
shock–aftershock sequences, presented us with an ideal

opportunity to test the FTLS hypothesis and developed software.
The analysis presented is here is not yet a truly prospective, real-
time application, because we were (and still are not) set up com-
putationally and, to a certain extent, methodologically to con-
duct such an urgently needed but challenging test. However, it is
meaningful in a pseudoprospective sense, an analysis that repro-
duces real-time condition. Our pseudoprospective study is, how-
ever, more rigors, and we would argue more meaningful than
typical such studies, because the method and codes used to con-
duct the automatic analysis have been published before and were
here used unchanged from the version of the method submitted
for publication. In other words, they could not have been opti-
mized to provide the best outcome for our hypothesis.

The results obtained and presented in this article support
the FTLS hypothesis: seismicity following the Mw 6.4 event

TABLE 2
Vertices of the Fault Planes (FP1 and FP2) Corresponding to the Nodal Planes in Table 1

Global CMT Day Lon FP1 (°) Lat FP1 (°) Depth FP1 (km) Lon FP2 (°) Lat FP2 (°) Depth FP2 (km)

Quick 04 −117.3882 35.7822 5.9452 −117.4049 35.614 5.8858

−117.6127 35.6181 5.9452 −117.6071 35.7963 5.8858

−117.6238 35.6281 15.4748 −117.6071 35.7963 15.5342

−117.3993 35.7923 15.4748 −117.4049 35.614 15.5342

06 −117.4007 35.5422 1.2576 −117.3302 35.9421 1.1164

−117.823 35.9809 1.2576 −117.8634 35.5918 1.1164

−117.798 35.9968 14.7424 −117.8684 35.5969 14.8836

−117.3756 35.5581 14.7424 −117.3353 35.9472 14.8836

Revised 04 −117.3926 35.7854 5.7213 −117.6032 35.7951 5.7162

−117.61 35.6208 5.7213 −117.4004 35.6186 5.7162

−117.6151 35.6252 15.2787 −117.4045 35.6155 15.2838

−117.3977 35.7898 15.2787 −117.6072 35.7921 15.2838

06 −117.3948 35.5492 1.2208 −117.8633 35.596 1.1363

−117.8224 35.9776 1.2208 −117.3353 35.943 1.1363

−117.8039 35.9898 14.7792 −117.3353 35.943 14.8637

−117.3763 35.5614 14.7792 −117.8633 35.596 14.8637

Shelly (2020) 04 −117.3874 35.7885 10.2753 −117.598 35.7982 10.2702

−117.6048 35.6238 10.2753 −117.3952 35.6216 10.2702

−117.6098 35.6282 19.8327 −117.3993 35.6185 19.8378

−117.3924 35.7929 19.8327 −117.602 35.7951 19.8378

06 −117.3896 35.5515 −3.5382 −117.8582 35.5984 −3.6227

−117.8172 35.9799 −3.5382 −117.3302 35.9453 −3.6227

−117.7987 35.9921 10.0202 −117.3302 35.9453 10.1047

−117.3711 35.5637 10.0202 −117.8582 35.5984 10.1047

See Table 1 for details of the symbols. Global CMT, Global Centroid Moment Tensor; Lat, latitude; Lon, longitude.
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showed a substantially lower b-value (a drop of 23%, Fig. 4),
resulting in its correct red traffic-light designation. The b-value
also rose by 26% after the Mw 7.1 quake, resulting in a correct
green classification. This adds one correct positive and one cor-
rect negative to the confusion matrix analysis presented in
Gulia and Wiemer (2019), increasing the accuracy assessment
to above 96%. A correct green traffic light was also attributed
after the 1995Mw 5.8 earthquake. Because the FTLS hypothesis
is proposed and evaluated for events with a magnitude of 6.0
and above, the Mw 5.8 results are not factored into the (retro-
spective) error matrix score.

The FTLS hypothesis itself needs to be further tested, and
the error matrix approach needs to be carried out on future
sequences in a fully prospective, independently conducted
way. Such tests are now planned as part of the Collaboratory
for the Study of Earthquake Predictability (Schorlemmer
et al., 2018), financed by the European Real-time earthquake
rIsk reduction for a reSilient Europe project (see Data and
Resources). In addition, the observed changes in b-values
can and should also be directly converted into time-dependent
earthquake probabilities, as shown in Tormann et al. (2016)
and Gulia et al. (2016) for example. These probabilities are also
reported for the Ridgecrest sequences (Fig. 5), which are very
consistent with the FTLS results and will be tested in compari-
son to other models, such as the Reasenberg–Jones or ETAS
models. The FTLS green alert may turn out to be the most
important one in terms of its practical implications, for the vast
majority (80%) of all sequences will fall into this category, and

knowing that a larger event is
unlikely will be extremely valu-
able information. Indeed, after
the M 7.1, we estimate about a
factor 10 lower probability for
a subsequent larger one that
the standard USGS model.

Naturally, in principle, it
would be great to extend the
FTLS model to smaller main-
shocks, because more data
could be used to test the
hypothesis. However, the data
would have to be of very high
quality, and their inclusion
would probably increase the
uncertainty of the analysis.
The smaller size of the fault
planes involved in such events
(e.g., anM 5.5 source would be
about 6 km long) would make
it more challenging to identify
the active fault. Because
smaller mainshocks will gener-
ally result in fewer aftershocks,

the spatiotemporal resolution of b-values is reduced, and the
useful magnitude range between the largest events and Mc

decreases, making it more difficult to establish reliable b-val-
ues. Probably scaling works in such a way that we would have
to select events even closer to the mainshock fault only, which,
in turn, makes pinpointing the location even more challenging.
Also, sample sizes may be too small for robust analyses.
Similarly, the relevant background (i.e., the reference level)
would be even more local and thus harder to determine. In
addition, the coulomb stress and failure modeling in Gulia et al.
(2018) suggest that the amplitude of the b-value increase is
magnitude dependent, so it is unclear whether b-value transi-
ents are scale invariant. Therefore, it needs to be explored
whether the evaluation of the FTLS hypothesis can be extended
to smaller events, but this will necessitate a very thorough
analysis of any uncertainties and their influence on the stability
of the analysis. An analysis of that kind is beyond the scope of
this Ridgecrest case study.

The spatial patterns of changes in b-values have been pro-
posed as additional information on the future location of sub-
sequent larger events, and here too the Ridgecrest case study is
well in line with this loosely formulated and as yet not formally
tested hypothesis: the Mw 7.1 event occurred near the area of
the steepest b-value decrease (Fig. 6). More research and test-
ing are needed to integrate this spatial information into after-
shock forecasting in an automate way; for now, we consider the
information contained in b-value or earthquake probability
maps additional information for experts to be considered.

Figure 7. Time series of the magnitude of completeness (red lines) in the catalog by Shelly (2020)
estimated using the maximum curvature method for samples containing 300 events, moved
through the data in overlapping windows. Gray lines represent uncertainty estimates obtained by
bootstrapping. The black dashed lines as well as the black stars represent the time of theM 6.4 and
M 7.1 events.
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Establishing with confidence a b-value time series critically
hinges on the quality of the seismic network, and judging from
our analysis the southern California network performed
extremely well (Fig. 1) in near-real time (much of our analysis
was in fact conducted within days of the Mw 6.4 event). The
magnitude of completeness rapidly decreased (Fig. 1) and the
FMD (Figs. 4 and 9) is among the best we have ever analyzed,
closely following a linear Gutenberg–Richter distribution and
leading within hours to reliable observations of b-value
changes. Based on our experience, the differential b-value maps
computed (Fig. 6) are also very reliable. Progress made in sta-
tion coverage and automated network-processing approaches
are clearly delivering very rapidly high-quality data that are
useful for scientific analysis and risk assessment. Further
improvements using advanced automated postprocessing
methods may be feasible and desirable to decrease no-alert
time. Our test using the higher-resolution catalog provided
by Shelly (2020) supports this (Figs. 8 and 9). The catalog
confirms every aspect of the results obtained using ComCat

real-time data, so we consider the likelihood of data imperfec-
tion influencing our analysis to be very low. Equally impor-
tantly, the Shelly catalog allows us to reduce no-alert time
to just 1 hr. Because the approach implemented by Shelly in
principle reveals the real-time capabilities of seismic networks
in the not-too-distant future, we suggest that it may be possible
to produce an FTLS assessment within just one or a few hours.
We also suggest that the sensitivity analysis toMc and no-alter

Figure 8. Performance of the FTLS with the high-resolution
catalog by Shelly (2020): (a) b-value time series for the Mw 7.1
sequence superimposed on the FTLS assessment (Gulia and
Wiemer, 2019); blue dashed line is the reference b-value; black
dashed vertical lines indicate Mw 6.4 and Mw 7.1, respectively.
Gray indicates uncertainty (one standard deviation by Shi and
Bolt, 1982). (b) FMDs for the source of the Mw 6.4 event for two
time periods: background in blue and time between the two
Mw > 6 in red. (c) FMDs for the source of the Mw 7.1 event for
two time periods: background in blue and maximum b-value
reached in the first week of aftershocks.
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time we introduce in Figure 9 are the powerful tools to quickly
evaluate the robustness of an FTLS results. This may be also in
real time a graphical representation a seismologist wants to
consult in a crisis to ensure the results are not critically depen-
dent on the choice of parameters.

The FTLS hypothesis is quite new, and although the suc-
cessful Ridgecrest case provides additional support for it, in
our view, it is too early to use it routinely for making decisions
about civil protection or public communications. More exten-
sive sensitivity and robustness studies are needed; the hypothesis
should be independently evaluated by other research teams, and
the hypothesis needs to be formally tested. There are plans for
this, but it will take time. Simultaneously, numerical modeling
may allow the formulation of a better physical understanding
and maybe enhanced forecasting abilities. These efforts will take
time, but, given the potential implications and greater under-
standing, we consider them highly worthwhile.

Data and Resources
The Comprehensive Earthquake Catalog (ComCat) by U.S. Geological
Survey (USGS) was downloaded from the website https://earthquake
.usgs.gov/fdsnws/event/1/catalogsand ZMAP (last accessed October
2019) (Reyes and Wiemer, 2019). Information about earthquake

Figure 9. Sensitivity analysis on no-alert time and completeness.
Color coded is the b-value difference in percentage with respect to
the reference b-value as a function of magnitude cutoff and time
after theMw 6.4 (left) andMw 7.1 (right). We always analyzed the
first 300 events above this magnitude and after this time. (a) Black
dashed line represents the estimated magnitude of completeness
for the Comprehensive Earthquake Catalog (ComCat) reported in
Figure 1; gray dashed line represents the same with the 0.2
correction factor, as adopted in our modeling; (b) the estimated
magnitude of completeness for the high-resolution catalog by
Shelly (2020) reported in Figure 7; gray dashed line represents the
same with the 0.2 correction factor, as adopted in our modeling.
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hazard program is available at https://earthquake.usgs.gov/ (last
accessed October 2019). Data about near-real-time probabilities of
aftershocks and subsequent mainshocks estimated by USGS are avail-
able at https://earthquake.usgs.gov/earthquakes/eventpage/ci38457511/
oaf/commentary (last accessed May 2020). The codes can be down-
loaded from ETH Zurich website (doi: 10.3929/ethz-b-000357449, last
accessed May 2020). Information on International Federation of Digital
Seismograph Networks (FDSN) webservice is available at https://
earthquake.usgs.gov/fdsnws/event/1/ (last accessedMay 2020). The net-
work codes of FDSN are available at https://www.fdsn.org/networks/.
Data about USGS are available at https://earthquake.usgs.gov/data/oaf/
overview.php (last accessed May 2020). Information about Generic
Mapping Tools is available at http://gmt.soest.hawaii.edu (last accessed
May 2020) and the figures were made using website www.soest.hawaii
.edu/gmt (last accessed May 2020). Data about European Real-time
earthquake rIsk reduction for a reSilient Europe project are available at
www.rise-eu.org (last accessed May 2020). The MATLAB is available at
www.mathworks.com/products/matlab (last accessed November 2018).
The supplemental material for this article includes the text files of the sub-
catalogs generated for each fault plane and for the three different catalogs.
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Summary 

 

The EEPAS (Every Earthquake a Precursor According to Scale) forecasting model is a space–time 

point-process model based on the precursory scale increase (𝜓 ) phenomenon and associated 

predictive scaling relations. It has been previously applied to New Zealand, California and Japan 

earthquakes with target magnitude thresholds varying from about 5 to 7. In all previous application, 

computations were done using the computer code implemented in Fortran language by the model 

authors. In this work we applied it to Italy using a suite of computing codes completely rewritten in 

Matlab and Python. We first compared the two software codes to ensure the convergence and 

adequate coincidence between the estimated model parameters for a simple region capable of being 

analyzed by both software codes, then using the rewritten codes we optimized the parameters for a 

different and more complex polygon of analysis using the catalog data from 1990 to 2011 then we 

perform a retrospective (pseudo-prospective) forecasting experiment of Italian earthquakes from 

2012 to 2021 with Mw³5.0 and compare the forecasting skill of EEPAS with other forecasting 

models. 
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Introduction 

EEPAS is a seismic forecasting method based on the statistical analysis of seismicity (Rhoades and 

Evison, 2004). Its basic assumption is that magnitudes and rates of minor seismicity increase before 

a strong shock. This phenomenon (called 𝜓 − 𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑜𝑛)	was described by Evison and Rhoades 

(2004) for some region of the world in which high quality seismic catalogs are available. They 

analyzed 47 earthquakes with magnitude ranging between 5.8 and 8.2 to derive three different 

empirical relations scale relations, for time, magnitude, and area.  These relate the magnitude of 

mainshock (𝑚!) with the precursor magnitude (𝑚"), the precursor time (𝑡#) and the precursor area 

(𝐴$). Such empirical scale relations show that in general the magnitude of precursor events is smaller 

than the magnitude of mainshock of at least one magnitude unit. EEPAS model consider each 

earthquake as an individual precursor according to their appropriate magnitude scale, rather than as 

a possible member of a 𝜓 phenomenon. 

The details of the EEPAS method are described in a number of papers (e.g. Rhoades and Evison, 

2004, Evison and Rhoades, 2005, Rhoades, 2007, 2011, Rhoades et al., 2020) some of which contains 

typos that makes the formulation not perfectly identical in all of them. For such reason in Appendix 

A of the present paper we describe again the method as well as some assumptions made without 

explicit mentions in previous papers. 

We implemented such formulations in a suite of Matlab and Python codes that we first compared 

with the code EEPSOF (Rhoades, 2021) used in all previous applications of EEPAS methods. The 

results of this comparison are described in Appendix B and indicate a reasonable agreement between 

the values of the parameters estimated by the two computational approaches, even if not a perfect 

coincidence due to some differences in the calculation methods adopted, and in particular in the 

numerical algorithms used by the two codes for spatial integration.  

For comparison purposes we also consider other forecasting models and in particular the Epidemic 

Type Aftershock Sequence (ETAS) model (Ogata, 1989, 1998) and two time-independent forecasting 

models: the Spatially Uniform Poisson (SUP) and the Spatially Variable Poisson (SVP) models 
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(Console et al., 2006). The description of our implementations of such models is reported in Appendix 

C. 

The fitting of the free parameters of various models is carried out by maximizing the log-likelihood 

function of an inhomogeneous Poisson point process, which is given by: 

ln 𝐿 = 1 ln 𝜆(𝑡% , 𝑚% , 𝑥% , 𝑦%)
&!∈(&",&#);"!,"$;(-!,.!)∈/

−7 7 8𝜆(𝑡,𝑚, 𝑥, 𝑦)	𝑑𝑦	𝑑𝑥	𝑑𝑚	𝑑𝑡
/

"%

"$

&#

&"
 

(1) 

Where 𝜆(𝑡,𝑚, 𝑥, 𝑦) is the rate density function for PPE (eq. A9), EEPAS (eq. A7), ETAS (eqs. C7a, 

C7b), SUP and SVP (eq. C8) models. (𝑡! , 𝑡0) is the time interval of the fitting period, (𝑚1 , 𝑚2) is 

the magnitude range of target earthquakes and R is the spatial region of analysis.  

 

Application to Italy 

We chose as target shocks threshold 𝑚1 = 5.0 because in Italy such earthquakes potentially cause 

damage to buildings and threat the health and the life of inhabitants. Such choice is also consistent 

with most of the applications of EEPAS model to other regions of the World (Rhoades and Evison  

2004, Evison and Rhoades 2005, Rhoades 2007, 2011). 

We chose the learning time interval from 1990 to 2011 for fitting the EEPAS model as the accuracy 

and completeness of the Italian catalog improved significantly since 1990 (Gasperini et al., 2013) and 

use the ten years interval from 2012 to 2021 for the retrospective testing of the model. 

As application region R, we consider a regular tessellation of the Italian territory made of square cells 

with side 𝐿 = 30√2 km from 7°E to 19°E in longitude and from 36°N to 47°N in latitude. The choice 

of the side size is made, for compatibility with our previous works by Gasperini et al., (2021), so that 

each square cell is (almost) perfectly inscribed in a circular cell with radius of 30 km like those used 

in the latter paper. Because the completeness of the seismic catalogue is poor in offshore areas, 

according to Gasperini et al., (2021), we consider only the cells within which at least one earthquake 

with 𝑀 ≥ 4.0 occurred inland from 1600 to 1959 according to the CPTI15 catalogue (Rovida et al., 

2020) and from 1960 to 2021 according to the HOmogenized instrRUmental Seismic (HORUS) 
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catalog (Lolli et al., 2020). We also excluded the cells that are not contiguous to the main analysis 

polygon (such as insulated cells on islands). At the end, the square cells that constitute the region of 

analysis R are in all 177 (Fig. 1).  

For model parameters fitting, a seismic catalog, characterized by a completeness magnitude (𝑚3)  of 

at least two units lower than the target magnitude (𝑚1) is desirable (Rhoades and Evison, 2004). For 

Italy a seismic catalog with homogeneous magnitudes and high resolution is the HORUS catalog 

(Lolli et al., 2020) reporting earthquakes from 1960 to present. According to Lolli et al. (2020), 

HORUS can be considered complete within the Italian mainland for 𝑚 ≥ 4.0 since 1960, for 𝑚 ≥

3.0 since 1981, for 𝑚 ≥ 2.5 since 1990, for 𝑚 ≥ 2.1 since 2003 and for 𝑚 ≥ 1.8 since 2005. As 

dataset for this work, we used only shallow earthquakes with depth 𝑍 ≤ 40	𝑘𝑚.  To avoid edge 

effects in the fitting of model parameters, the contribution of earthquakes in the neighborhood of the 

region R must also be considered (Rhoades and Evison, 2004). We assume as neighborhood region 

the area included in the CPTI15 polygonal (Fig. 2) according to Rovida et al. (2020).  

To account for the limited accuracy of magnitude data, we binned all magnitudes to the nearest tenth 

of units: 

𝑚0%4456 =
int(𝑚7!8 × 10 + 0.5)

10  
(2) 

This also means that all magnitude lower thresholds (e.g. 𝑚1 ≥ 5.00) have to be intended 0.05 units 

smaller (𝑚1 ≥ 4.95). 

The HORUS catalog reports 27 target shocks with Mw ³ 5.0 from1990 to 2011 and 27 from 2012 to 

2021. This indicates that the rate of target shocks in the testing period is about twice than in the 

learning period. Hence, the forecasting of the correct number of earthquakes by all forecasting 

methods will be hard. 

After the first target shock (“mainshock”) of a seismic sequence, the forecasting of successive target 

shock (“aftershocks”) is easier, owing to the presence of small aftershocks (Gasperini et al., 2021). 

Hence, we also consider a declustered set of target shocks where all the target shocks occurred within 
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50 km and one year after any other target shock are removed. This reduces the number of considered 

target shocks for the declustered dataset to 12 and 9 for the learning and testing time intervals 

respectively. 

 

Estimation of EEPAS model parameters 

 

Considering the high number of free parameters to be determined for EEPAS model (in principle 

about 20), the maximization of the log-likelihood function (1) would be very time consuming and 

subject to numerical instability. However, according to Rhoades and Evison (2004), simultaneous 

optimization of all parameters is not necessary because some of them, such as the b-value of the 

Gutenberg and Richter (1944) relation and the parameters of the aftershock epidemic decay model 

(𝑝, 𝑘, 𝑐, 𝜈), can be, in fact, separately fitted or even be simply assigned based on previous works in 

the same area.  

The 𝑏 − value  of the Gutenberg and Richter (1944) relation is chosen so that to be representative of 

the behavior of the frequency magnitude distribution of target events in the fitting time interval. For 

the undeclustered and declustered sets the values 𝑏 = 1.084 and 𝑏 = 1.176 respectively make the 

number of predicted target events as close as possible to the observed numbers (27 and 12 

respectively). These values are kept fixed even for other forecasting models, computed for 

comparison.  

The parameters of the aftershock model are not particularly critical for the EEPAS model, however 

they are necessary to determine the weight 𝑤	(eq. A18) of the contribution of each earthquake (𝑀 ≥

𝑚3) by defining the probability with which an earthquake can be defined an aftershock of a previous 

seismic event. The parameters 𝑝 = 1.2  and 𝑐 = 0.03  of equation (A15) were chosen as typical 

parameters of Omori’s law (Ogata 1983). The two parameters 𝜈	and 𝑘 in equation (A13) were fitted 

by maximizing the likelihood with earthquakes with 𝑚 ≥ 𝑚1 occurred within R in the period 1990-

2011.  



	 7	

Finally, the parameter 𝜎9 = 0.006 of equation (A17) is chosen so that to be consistent with the mean 

value of the cluster diffusion parameter for Italy (Musmeci and Vere-Jones, 1992). The parameter 

𝛿 = 0.7 of equation (A16) is taken from previous works for New Zealand, California and Japan 

(Evison and Rhoades 2005, Rhoades and Evison, 2004, Rhoades, 2007, 2011). The parameters of the 

PPE model (13) 𝑎, 𝑑, and 𝑠 are fitted simultaneously using the maximum likelihood method.  

Regarding EEPAS parameters, the fit is made in three successive iterations. The parameter 𝑏: is 

fixed to 1 for all three iterations that means the perfect scaling between precursor and target 

magnitudes (Rhoades and Evison, 2004).  

In the first iteration, the parameters 𝑏1  and 𝑏;  are fixed to 0.40 and 0.35, respectively, based on 

analyses conducted on scaling relationships obtained from the analysis of individual earthquakes. The 

parameters 𝜎: and 𝜎1 are also fixed to 0.32 and 0.23, respectively. Such values correspond to the 

residual standard deviation for the magnitude and time scaling relations (Rhoades and Evison, 2004). 

Finally, parameters 𝑎1, 𝑎:, 𝜎; and 𝜇 are computed by maximum likelihood estimation.  

In the second iteration, the previously fitted parameters 𝑎1 , 𝑎: , 𝜎; are kept fixed at the obtained 

values and the parameters 𝑏1, 𝑏;, 𝜎:,𝜎1 and 𝜇  are computed instead by the maximum likelihood.  

In the third and last iteration a final computation is made of all parameters (𝑎1, 𝑎:, 𝜎;, 𝑏1, 𝑏;, 𝜎:,𝜎1 

and 𝜇) simultaneously providing the optimizer with starting values of the parameters as obtained in 

previous optimizations. The parameter 𝜇, responsible for mixing the two models PPE and EEPAS is 

the only parameter fitted in all three iterations of optimization.  

The parameters of the PPE and EEPAS (unweighted and weighted) obtained by maximizing the 

likelihood are reported in Table 1 and 2 for the undeclustered (mainshocks+aftershocks) and 

declustered (mainshocks only) target sets respectively.  In the same tables we also report the 

parameters of the other forecasting models (SUP, SVP, ETAS-SUP and ETAS-SVP) computed for 

comparison. 

In table 3 and 4 we report the goodness of fit estimators of various model for the undeclustered and 

declustered target sets respectively. We can note how both the ETAS models have better scores 
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(higher loglikelihood, information gain per event and G and lower AIC) than EEPAS and other 

models. Both EEPAS models also have lower loglikelihoods than SVP and for the declustered set 

higher AIC (worse) than SUP. Such scores are not particularly significant because only represent the 

goodness of the fit of the various forecasting models with the learning dataset and then might include 

some degree of overfitting of the learning dataset.   

 

Retrospective comparison of forecasting models with the testing dataset 

We apply the suite of tests defined by the Collaboratory for the Study of Earthquake Predictability 

(CSEP, Jordan, 2006, Zechar et al., 2010) and particularly the new ones described by Bayona et al., 

(2022).  

Such tests assess the consistency of observed earthquakes with a forecast model by i) the conditional 

loglikelihood (cL-test) ii) the observed number of earthquakes (N-test), iii) their spatial distribution 

(S-test) and iv) their magnitude distribution (M-Test). However, we do not report the results for the 

latter, because all forecasting models assume a Gutenberg–Richter frequency–magnitude distribution 

and then all pass the M-test. 

Traditional CSEP tests are based on a likelihood function that approximates earthquakes in individual 

cells or bins as independent and Poisson distributed (Schorlemmer et al., 2007, 2010, Zechar et al., 

2010). However, the Poisson distribution insufficiently captures the spatiotemporal variability of 

earthquakes, especially in the presence of clusters of seismicity (Werner and Sornette, 2008, 

Lombardi and Marzocchi, 2010, Nandan et al., 2019). Hence, the new CSEP tests are based on the 

negative binomial distribution (NBD) that reduces the sensitivity of CSEP evaluations to clustering 

𝑝\(𝜔|𝜏, 𝜈)` =
Γ(𝜏 + 𝜔)
Γ(𝜏)𝜔! 𝜈

<(1 − 𝜈)< 
(3) 

Where 𝜔 = 1,2, … is the number of events, 𝜏 > 0 and 0 ≤ 𝜈 ≤ 1 are parameters and Γ is the Gamma 

function. The mean and the variance of NBD are given by 
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𝜇 = 𝜏
1 − 𝜈
𝜈 ;	𝜎= =

1 − 𝜈
𝜈=  (4) 

If the confidence level goes below a given threshold, the model fails to describe satisfactorily the 

observed data even if it might be considered for comparison with other models if all models fail some 

consistency test.  

The N-test compares the number of predicted earthquakes in all (time–space–magnitude) bins with 

the number of target earthquakes observed.  

The binary cL-test compares the joint binary log-likelihood of the forecasting model with the really 

observed seismicity, with the distribution of joint binary log-likelihoods obtained by the simulation 

of random catalogs consistent with the forecasted one. If the former lies in the lower tail of the random 

binary log-likelihood distribution, the forecasting model does not reproduce well the real seismicity 

pattern and then the test fails. The binary log-likelihood is obtained by calculating the probability of 

an earthquake in a forecast bin rather than that of observing one or more earthquakes. The probability 

of observing 𝜔 = 0 events, given an expected events number or rate 𝜆, is 𝑃> = exp	(−𝜆), while the 

probability of observing more than zero events is 𝑃? = 1 − 𝑃> (Bayona et al., 2022). The binary log-

likelihood for each bin is thus given by  

𝐵𝐿𝐿 = 𝑋% ln(1 − exp(−𝜆)) + (1 − 𝑋%) ln(exp(−𝜆)) (5) 

Where 𝑋% represents the contribution to the log-likelihood score if the 𝑖 − 𝑡ℎ bin contains one or more 

events. The value of 𝑋% = 1	if the 𝑖 − 𝑡ℎ bin contains at least one event, on the contrary its value is 

0. The observed binomial joint log-likelihood is given by the summation of the BLL over all space-

magnitude-time bins: 

𝐽𝐵𝐿𝐿 =111𝑋(𝑙, 𝑗, 𝑘) lno1 − exp\−𝜆(𝑙, 𝑗, 𝑘)`p + [1 − 𝑋(𝑙, 𝑗, 𝑘) ln(exp (−𝜆(𝑙, 𝑗, 𝑘)]	
&

@A?

"

BA?

C

DA?

 
(6) 

The S-test evaluates the consistency of the spatial occurrence of target earthquakes regardless of their 

magnitudes. For the S-test the joint binary log-likelihood is calculated by first normalizing the 

forecast rate to the number of active cells. 
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For the cL, N and S test, the computed statistics is the quantile score that is the fraction of simulated 

likelihoods less or equal to the likelihood observed by the model. A small value, lower than the 

Bonferroni-adjusted significance level 𝛼 = 0.05 2⁄ = 0.025 , means that the model inadequately 

describes the seismicity pattern.  

To evaluate the relative skill of the forecasting models, we use the information gain per earthquake 

(IGPE, Rhoades et al., 2011), or per active bin (IGPA, Bayona et al., 2022), which are based on the 

likelihood difference with respect to a reference (baseline) forecasting model divided by the number 

of earthquakes or by the number of active bins (the bins in which the likelihood contribution is not 

zero) respectively. The IGPA is thus given by 

𝐼𝐺𝑃𝐴 =
𝑁0!C5 −	𝑁"E6

𝑀 +	
1
𝑀 1[𝑋"E6(𝑚) − 𝑋0!C5(𝑚)]

:

"A?

 
(7) 

Where 𝑁0!C5	and 𝑁"E6 are the total number of earthquakes expected by the baseline and the model 

respectively, M is the number of active bin, and 𝑋"E6(𝑚) and 𝑋0!C5(𝑚) are the joint log-likelihood 

score obtained in the bin with the 𝑚 − 𝑡ℎ target earthquake by the model and the reference baseline 

model respectively.  According to Rhoades at al. (2011) the variance of  𝑋"E6(𝑚) − 𝑋0!C5(𝑚) is 

given by 

𝑠= =	
1

𝑀 − 1 1(𝑋"E6(𝑚) − 𝑋0!C5(𝑚))= −
1

𝑀= −𝑀

:

"A?

x1 𝑋"E6(𝑚) − 𝑋0!C5(𝑚)
:

"A?

y

=

. 
(8) 

The IGPA error is estimated as ±𝑡𝑠√𝑀, where 𝑡 is the 95th percentile of the Student’s t inverse 

cumulative distribution with 𝑀 − 1 degrees of freedom. 

 As baseline model we take the SUP, which is the simpler one. We do not use the correction for the 

number of free parameters as proposed by Rhoades et al., (2014), because the fitting of models is 

independent on the testing set targets being made using the learning set. In addition, we do not use 

the parimutuel gambling score (PGS) by Zhuang (2010) and Zechar and Zhuang (2014), because 

Serafini et al. (2022) recently demonstrated that PGS is improper when the number of forecasting 

methods being tested is greater than two.  
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In Fig. 3 and Table 5 we report the numbers of undeclustered targets (mainshock+aftershocks) 

predicted by various models using different time intervals (3 months, 6 months, 1 year, 5 years, and 

10 years) of prediction. All models definitely underestimate the total number of targets (27) actually 

occurred. The reason is that the average rate of targets in the testing set (about 2.7 per year) is more 

than twice than that in learning set (about 1.2 per year).  

This strong difference influences the results of the cL-Test (Fig. 4 and Table S1) and N-Test (Fig. 5 

and Table S2) that rejects all models for all time intervals. Conversely, the S-Test (Fig. 6 and Table 

S3) is passed by all models for all time intervals. 

The results of the IGPA (T-test) for undeclustered targets in Fig. 7 and Table S4 indicate that most 

preferable models are the ETAS-SVP and ETAS-SUP for the shortest prediction interval of 3 months 

and the EEPAS-NW and EEPAS-W for longer prediction intervals. Looking also at the confidence 

intervals, the preference appears statistically significant only for time intervals of 5 or 10 years. 

In Fig. 8 and Table 6 we report the numbers of declustered targets (mainshock only) predicted by 

various models using different time intervals of prediction. All models still underestimate the total 

number of targets (9) actually occurred as even in this case the average rate of targets in the testing 

set (0.9 per year) is smaller than in the learning set (0.5 per year).  

The cL-Test of consistency (Fig. 9 and Table S5) is not passed by any model for any time interval 

whereas the N-Test (Fig. 10 and Table S6) is passed by most model for most time intervals (only 

excluding ETAS-SUP and ETAS-SVP for longer time intervals). The S-Test (Fig. 11 and Table S7) 

is passed by all models for all time intervals. 

The results of the IGPA (T-test) for declustered targets in Fig. 12 and Table S8 confirm that the most 

preferable models are the ETAS-SVP and ETAS-SUP for the shortest prediction interval of 3 months 

and the EEPAS-NW and EEPAS-W for longer prediction intervals. In this case such preferences 

appear statistically not significant at any time intervals. 

 

Conclusions 
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We applied the EEPAS seismic forecasting model to Italy similarly to previous application in other 

seismic regions of the world (e.g., Rhoades and Evison, 2004, Evison and Rhoades, 2005, Rhoades, 

2007, 2011, Rhoades et al., 2020) using a suite of computing codes completely rewritten in Matlab 

and Python and implementing both the EEPAS formulations with the not weighted (EEPAS-NW) 

and weighted (EEPAS-W) seismicity. We calibrated and fitted the model parameters using 

earthquakes of HORUS seismic catalogue of Italy (Lolli et al., 2020) for the learning period 1990-

2011. The EEPAS model was then applied to forecast all earthquakes (mainshocks + aftershocks) of 

the same seismic catalogue with 𝑀 ≥ 5.0 and only the mainshocks occurred within the polygon of 

analysis for the test period 2012-2021. We compared the forecasting skill of EEPAS with the ones 

obtained by other time dependent (ETAS-SUP and ETAS-SVP) and time independent (SUP, SVP 

and PPE) models implemented on the same dataset. We used a set of new CSEP consistency test 

based on a binary likelihood function as described in Bayona et al., (2022).   This latter reduces the 

sensitivity of spatial log-likelihood scores to the occurrence of seismic events (Bayona et al., 2022) 

with respect to previous versions of the tests based on a Poisson distribution assumption. The number 

of expected target earthquakes by each model compared tends to decrease as the forecasting interval 

increase. The highest expected number of earthquakes is for a window 3 months. However, all models 

tend to underestimate the numbers the total expected events actually occurred, 27 and 9 for the 

mainshock + aftershock and mainshock only datasets, respectively. This is due to the different 

average rate of target events in the learning and testing period. Such difference affects the 

performance of consistency tests, in particular for the not declustered data set. In fact, for this latter, 

there is no consistency between the log-likelihood and the numbers of expected events obtained by 

the model with the observed ones. For this reason, the cL and N tests failed for all models and for all 

forecasting intervals. On the contrary, all models passe the binary S-test and describes correctly the 

seismicity spatial pattern of target events. The difference in the seismicity rate between the learning 

and the testing period is less pronounced for the mainshock only dataset. This allows to pass all 

consistency test (cL, N, and S test) by almost all models compared for all forecasting intervals. The 
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only exceptions are the ETAS-SUP and the ETAS-SVP that for forecasting interval larger than 3-6 

months fail the cL and the binary S tests, respectively.  We also assess the relative forecasting skill 

of various model using the IGPA (Rhoades et al., 2011, Bayona et al., 2022) considering as baseline 

reference model the SUP. For both mainshocks+aftershock and mainshocks only datasets, the most 

preferable model is the ETAS-SUP and ETAS-SVP for the shortest forecasting interval of 3 months 

and the EEPAS-NW and EEPAS-W for the longer prediction intervals. These results confirm the 

different characteristics of the models ETAS and EEPAS. This latter rather than the ETAS models, 

is in fact more appropriate to make forecasts analyzing the long-term seismicity. 
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Appendix A - Formulation of PPE and EEPAS forecasting models 

 

In the EEPAS model each i-th earthquake, occurred at time 𝑡%  with magnitude 𝑚%  and located at 

(𝑥% , 𝑦%), is assumed to contribute to the transient increment of the rate density 𝜆(𝑡,𝑚, 𝑥, 𝑦) of future 

seismicity (defined as the derivative of the expected number of earthquakes with respect to time, 

magnitude and location coordinates) by the term 

𝜆%(𝑡,𝑚, 𝑥, 𝑦) = 𝑤%𝑓?%(𝑡)𝑔?%(𝑚)ℎ?%(𝑥, 𝑦) (A1) 

Where 𝑤% is a weighting factor which depends on other earthquakes in its proximity (see below). 

𝑓?%(𝑡), 𝑔?%(𝑚)	and	ℎ?%(𝑥, 𝑦) are the probability density functions of time, magnitude and location 

respectively. The assumed forms for these distributionsare defined consistently with the 𝜓 scaling 

relations by Rhoades and Evison (2004). The time distribution is assumed to be Log-Normal with the 

form  

𝑓?%(𝑡) =
𝐻(𝑡 − 𝑡%)

(𝑡 − 𝑡%) ln(10) 𝜎1√2𝜋
exp x−

1
2 �
log(𝑡 − 𝑡%) − 𝑎1 − 𝑏1𝑚%

𝜎1
�
=

y 
 

(A2) 

where 𝐻(𝑡 − 𝑡%)	is the Heaviside step function, which value is 1 if 𝑡 − 𝑡% > 0,  or 0 otherwise. This 

means that at the time t, the rate density function is contributed only by earthquakes occurred before 

t. 𝑎1 , 𝑏1 	and 𝜎1 are free parameters to be determined.  

The magnitude distribution 𝑔?%(𝑚) is assumed to be Normal with the form:  

𝑔?%(𝑚) =
1

𝜎:√2𝜋
exp �−

1
2�
𝑚 − 𝑎: − 𝑏:𝑚%

𝜎:
�
=

� 
(A3) 

where a:, 𝑏: and 𝜎: are free parameters.  

The space distribution is assumed to be bivariate Normal with circular symmetry with the form 

ℎ?%(𝑥, 𝑦) =
1

2𝜋𝜎;=100&"!
exp �−

(𝑥 − 𝑥%)= + (𝑦 − 𝑦%)=

2𝜎;=100&"!
� 

 (A4) 

where 𝜎; and 𝑏;	are free parameters.  
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An adjustment is necessary because of the missing contribution of earthquakes below the minimum 

completeness magnitude 𝑚3 which underestimates on average the rate density at magnitude m by a 

fraction 𝛥(𝑚) of its real value given by  

𝛥(𝑚) = 𝜙 �
𝑚 − 𝑎: − 𝑏:𝑚3 − 𝜎:=𝛽

𝜎:
� 

(A5) 

where 𝜙 is the Normal distribution integral. Then 𝛥(𝑚)	can also be written as 

𝛥(𝑚) =
1
2 erf ��

𝑚 − 𝑎: − 𝑏:𝑚3 − 𝜎:=𝛽
𝜎:√2

� + 1� 
(A6) 

where erf is the Error function. 

Hence, to compensate the lack of earthquakes with magnitude lower than the completeness magnitude 

𝑚3, 𝜆%(𝑡,𝑚, 𝑥, 𝑦) is then inflated by a factor ?
G(")

.  

The total rate density is obtained by summing the contribution of all past earthquakes and also adding 

a background term that allows for the possibility that an earthquake can occur without an appreciable 

scale increase of precursory shocks:  

𝜆(𝑡,𝑚, 𝑥, 𝑦) = 𝜇𝜆>(𝑡,𝑚, 𝑥, 𝑦) 					+ 1 𝜂(𝑚%)𝜆%(𝑡,𝑚, 𝑥, 𝑦)
&H65D!.

&!I&';"!I"(

 
(A7) 

where 𝜆>(𝑡,𝑚, 𝑥, 𝑦) is the background rate density, 𝑡> is the time of the beginning of the catalogue, 

𝜇 is the mixing parameter and can be interpreted as the proportion of earthquakes that occur without 

precursory shocks. 𝜂 is a normalizing function which is defined by 

𝜂(𝑚%) =
𝑏:(1 − 𝜇)
𝐸(𝑤) exp �−𝛽 �𝑎: + (𝑏: − 1)𝑚% +

𝜎:=𝛽
2 �� 

(A8) 

where 𝐸(𝑤) is the mean weight of earthquakes in the catalogue, a:, 𝑏: and 𝜎: are the parameters 

defined in eq. (A3) and 𝛽 = 𝑏 ln 10, with 𝑏 being the slope of the frequency-magnitude distribution 

of Gutenberg and Richter (1944).   𝜂(𝑚%)  ensures that the number of earthquakes expected by the 

model approximatively matches the actual number of target earthquakes. The delay term in equation 

(A7) avoids that the fit of the parameters is influenced by the short-term clustering of earthquakes 
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(such as aftershocks and swarms). The EEPAS model, in fact, is focused on the long-term clustering 

detected by the precursory scale increase phenomenon and its associated scale relationships. For this 

reason, such delay (usually assumed of 50 days) after the time of occurrence of each earthquake is 

applied and no earthquake from the input catalogue is considered before such time interval elapsed 

after a target shock.  

The background rate density 𝜆>(𝑡,𝑚, 𝑥, 𝑦) depends on the proximity of the site (x, y) with respect to 

previous seismicity. It is described by a quasi-time-invariant smoothed seismicity model, described 

by Rhoades and Evison (2004), which is similar to the forecasting model proposed by Jackson and 

Kagan (1999) and is called PPE (Proximity to Past Earthquakes). It takes the form 

𝜆>(𝑡,𝑚, 𝑥, 𝑦) = 𝑓>%(𝑡)𝑔>%(𝑚)ℎ>%(𝑥, 𝑦) (A9) 

where  𝑓>%(𝑡) is the time density function, 𝑔>%(𝑚) is the magnitude density function and ℎ>%(𝑥, 𝑦) is 

the space density function. The time density function takes the form  

𝑓>%(𝑡) =
1

𝑡 − 𝑡>
 (A10) 

This ensures that at any time the estimated rate of earthquakes with 𝑚 ≥ 𝑚1 within the region R is 

similar to the past rate.  

The magnitude density function is that implied by the frequency magnitude law of Gutenberg and 

Richter (1944):  

𝑔>%(𝑚) = 𝛽 exp[𝛽(𝑚 −𝑚3)] (A11) 

Finally, ℎ>%(𝑥, 𝑦) is the sum over all earthquakes with 𝑚% ≥ 𝑚1 from time 𝑡> up to, but not including 

time 𝑡 of smoothing kernels with the form 

ℎ>%(𝑥% , 𝑦%) = 1 𝑎(𝑚% −𝑚1)
1
𝜋 �

1
𝑑= − 𝑟%=

� + 𝑠
&H65D!.

&!I&';"!I"$

 
(A12) 

where 𝑟% is the distance in km between (𝑥, 𝑦) and the epicenter (𝑥% , 𝑦%); 𝑎 is a normalizing parameter, 

𝑑 is a smoothing distance and 𝑠 is a small term that includes the contribution of earthquakes occurred 

far from past epicenters.  
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The rate density 𝜆>(𝑡,𝑚, 𝑥, 𝑦) of the PPE model decreases gradually with time elapsed after an 

earthquake occurrence and increases when a new earthquake occurs. The function ℎ>%(𝑥, 𝑦) takes 

into account the earthquake location and the function 𝑓>%(𝑡) the passage of time.  

The purpose of the weighting factor 𝑤% in eq. (A1) is to give more weight to earthquakes that are 

more likely to be part of a long-term clustering, thus giving less weight to events that are aftershocks 

of previous earthquakes. Two different weighting strategies were applied in the past application of 

EEPAS. The simplest one is giving the same weight 𝑤% = 1 to each earthquake in the catalogue. With 

this strategy aftershocks triggered by previous earthquakes have the same weight of any other shock. 

The other strategy is to assign a lower weight to any earthquake which is likely to be an aftershock 

of a previous earthquake. Therefore, the total rate density is mostly given by earthquakes that are part 

of long-term clustering.   

This latter strategy requires estimating the rate density 𝜆J for aftershock occurrence, incorporating 

epidemic-type aftershock behavior (Ogata, 1988, 1998, Console and Murru, 2001). The aftershock 

model adopted for EEPAS takes the form: 

𝜆J(𝑡,𝑚, 𝑥, 𝑦) = 𝜈𝜆>(𝑡,𝑚, 𝑥, 𝑢) + 𝑘 1 𝜆%J(𝑡,𝑚, 𝑥, 𝑦)
&!,&'

  (A13) 

Where 𝜆>  is the rate density given by PPE model, 𝜈 is the proportion of earthquake that are not 

aftershocks, 𝑘  is a normalization constant and 𝜆J(𝑡,𝑚, 𝑥, 𝑦) describes the aftershocks occurrence 

with the form:  

𝜆%J(𝑡,𝑚, 𝑥, 𝑦) = 𝑓=%(𝑡)𝑔=%(𝑚)ℎ=%(𝑥, 𝑦) (A14) 

Where 𝑓=%(𝑡), 𝑔=%(𝑚) and ℎ=%(𝑥, 𝑦) are respectively the density rate functions for time, magnitude, 

and locations of the aftershocks of the i-th earthquake. The time distribution is given by the modified 

Omori law (Utsu, 1961, Ogata, 1983): 

𝑓=%(𝑡) = 𝐻(𝑡 − 𝑡%)
𝑝 − 1

(𝑡 − 𝑡% + 𝑐)$
  (A15) 

Where 𝑡% is the time of the i-th earthquake, 𝑐 and 𝑝 are the Omori law parameters.  
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The magnitude distribution follows the Gutenberg and Richter (1944) law, and it is assumed that the 

magnitude of an aftershock is smaller than its mainshock by at least 𝛿 units  

𝑔=%(𝑚) = 𝐻(𝑚% − 𝛿 −𝑚)𝛽 exp[𝛽(𝑚 −𝑚%)] (A16) 

The addition of the parameter 𝛿 is based on the so-called Bath’s law (Båth, 1965), according to which 

the largest aftershock typically has a magnitude about 1.2 units smaller than the mainshock. Finally, 

the spatial distribution is assumed to be Normal bivariate with circular symmetry:  

ℎ=%(𝑥, 𝑦) =
1

2𝜋𝜎9=10"!
exp �−

(x − xK)= + (y − yK)=

2σL=10M)
� 

(A17) 

Where 𝜎9 is a free parameter. The weighting factor is then computed as  

𝑤% =
𝜈𝜆>(𝑡% , 𝑚% , 𝑥% , 𝑦%)
𝜆J(𝑡% , 𝑚% , 𝑥% , 𝑦%)

 
(A18) 

In this way if an earthquake has the characteristics of an aftershock will have a weight close to 0, on 

the contrary if an earthquake that in no way resembles an aftershock will have a weight close to 1.  
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Appendix B Implementation of Matlab and Python codes and comparison with EEPSOF 

Version 2.3w  

 

We developed a suite of codes in Matlab and Python languages reproducing the formulation described 

in the Appendix A. We tested them vs the EEPSOF code (Version 2.3w) developed by D. A. Rhoades 

(Rhoades, 2021) and provided as binary Linux executable file compiled by Fortran77. To make the 

comparison, we adopted a simplified spatial geometry as the EEPSOFT hardly manage the complex 

shape made by a tessellation of the Italian area as described in the main text. The purpose of the 

comparison is to ensure that the optimized parameters value and the relative maximum log-

likelihoods are satisfactorily similar.  

One difference between the Matlab implementation and EEPSOF is the treatment of spatial data. 

While the EEPSOF code computes itself the kilometric distances directly from geographical 

coordinates, for the Matlab implementation we have chosen to preliminary convert all coordinates 

from the WGS84 geographic reference to kilometric coordinates in the RDN2008 Italy Zone (E-N) 

EPSG: 7794 by the QGIS software. 

We applied both codes to the dataset of target earthquakes with magnitude M ≥ 5.0 occurred from 

1990 to 2020 within the analysis polygon. The latter is a rectangle with sides of 576 km eastward and 

of 745 km northward (Fig. A1). The vertices of the polygon for EEPSOF were converted from 

kilometric coordinate in the RDN2008 Italy Zone (E-N) system to the WGS84 coordinate reference 

system. For fitting the EEPAS model, we used the earthquakes from the HORUS catalogue with 𝑀 ≥

2.5 and 𝑍 ≤ 50	𝑘𝑚 occurred inside the polygon from 1960 to 2020. To avoid edge effects in the 

fitting of model parameters, the contribution of earthquakes in the neighborhood up to 200 km from 

the polygon were also considered (Fig. A1).  The used dataset contains 38086 events, of 24816 which 

are within the analysis polygon.  For both software codes, the log-likelihood optimization is carried 

out using the downhill simplex method (Nelder and Mead, 1965) as described in Rhoades and Evison 

(2004).  
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For the comparison, the fit of the EEPAS parameters is made in five iterations, one for the parameters 

𝑎1 , 𝑎: and 𝜗; and the others adding one at a time the parameters (𝜗1 , 𝜗: , 𝑏;, 𝑏1)  to notice the onset 

of possible deviations. In the first iteration the parameters  𝜗1 , 𝜗: , 𝑏;, 𝑏1 were set to 0.23, 0.32, 0.35 

and 0.40 respectively, based on analyses conducted on scaling relationships obtained from the 

analysis of individual earthquakes (Rhoades and Evison, 2004). With these parameters set, 𝑎1, 𝑎: 

and 𝜎;  were fit by the maximum likelihood estimation using as starting values 1.5, 1.4 and 3.3, 

respectively. The fit procedure continued by adding one parameter at a time and considering the 

previously obtained values as initial values. The parameters, log-likelihoods values and the expected 

numbers of earthquakes are reported in Table A1.  

The optimized parameter values for the first iteration are unequivocally similar for the two codes as 

the differences are less than 0.90%. In the second and third step the estimates of parameters 𝑎: and 

𝜗1  begins to slightly deviate with maximum percentual differences up to about 3.0%.  With the 

introduction in the fit of the spatial parameters, the differences of the other parameters also increase. 

In the fifth and final iteration, the differences are more pronounced, particularly for the parameters 

𝑎1 , 𝜎;  and 𝑏1 , where their values become 12.5%, 10.2% and 24.0%, respectively. However, the 

differences in log-likelihoods and expected numbers of earthquakes remain small.  Such differences 

mainly regard spatial parameters and are probably related to the different way in which distances are 

handled by the two different software codes as well as to the different methodology with which 

integration over space is made.  
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Appendix C - Implementation of the ETAS, SUP and SVP models  

 

In the literature we can find several implementations of the Epidemic Type Aftershock Sequence 

(ETAS) model to earthquake forecasting in Italy (e.g. Console et al., 2006, Lombardi and Marzocchi, 

2010). In all of them the time dependence is modeled as a sum of Omori decays starting at the times 

of each occurred shock 

𝑓(𝑡) =1
𝐻(𝑡 − 𝑡%)𝐾
(𝑡 − 𝑡% + 𝑐)$

4

%A?

 
(C1) 

where K, p and c are free parameters and 𝐻(𝑡 − 𝑡%) is the Heaviside step function which is 1 if 𝑡 −

𝑡% > 0 and is 0 otherwise. 

The productivity of each occurred shock of magnitude 𝑀% is described by  

𝑟 = 𝑒N(:!H:() (C1) 

where 𝛼 is a free parameter and 𝑀3 is the minimum magnitude of completeness. 

The decay of the productivity with the distance from the epicenter (𝑥% , 𝑦%) of each occurred shock is 

described by (e.g. Console et al., 2006, Lombardi and Marzocchi, 2010) 

𝑔(𝑥, 𝑦) =
(𝑞 − 1)o𝑑=(OH?)p

𝜋[(𝑥 − 𝑥%)= + (𝑦 − 𝑦%)= − 𝑑=]O
 

(C3) 

where q and d are free parameters and (𝑥% , 𝑦%) are the epicenters of the occurred shock. 

The space decay can also be given in exponential form (Zhuang et al., 2002)  

𝑔(𝑥, 𝑦) =
𝑒
H?=

(-H-!)*P(.H.!)*

65+,-!.-(/

2𝜋𝑑𝑒N(:!H:()
 

(C4) 

Finally, the frequency magnitude distribution of shocks is given by the Gutenberg and Richter (1944) 

law 

ℎ(𝑚) = 𝛽𝑒HQ("H:() (C5) 

Where 𝛽 = 𝑏	𝑙𝑛10 is a free parameter. 
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Combining all the previous terms together, and adding a time invariant background seismicity term 

𝜆>(𝑥, 𝑦,𝑚), the rate density of ETAS models using the two space decay formulations (C3 and C4 

respectively) is given by 

𝜆(𝑡, 𝑥, 𝑦,𝑚) = 𝜈𝜆>(𝑥, 𝑦,𝑚) + [𝑓(𝑡)𝑟𝑔(𝑥, 𝑦)ℎ(𝑚)] (C6) 

𝜈𝜆>(𝑥, 𝑦,𝑚) + �1
𝐻(𝑡 − 𝑡%)𝐾
(𝑡 − 𝑡% + 𝑐)$

4

%A?

𝑒N(:!H:()
(𝑞 − 1)o𝑑=(OH?)p

𝜋[(𝑥 − 𝑥%)= + (𝑦 − 𝑦%)= − 𝑑=]O
𝛽𝑒HQ("H:()� 

(C7a) 

or  

𝜈𝜆>(𝑥, 𝑦,𝑚) + �1
𝐻(𝑡 − 𝑡%)𝐾
(𝑡 − 𝑡% + 𝑐)$

4

%A?

𝑒N(:!H:()
𝑒
H?=

(-H-!)*P(.H.!)*

65+,-!.-(/

2𝜋𝑑𝑒N(:!H:()
𝛽𝑒HQ("H:()� 

(C7b) 

In both formulations 𝜈 represents the ratio between the expected number of independent events and 

the total number of events. For the comparisons in this work, we only used the formulation (C7a) 

according to Lombardi and Marzocchi (2010). 

The time invariant models of seismicity consist of stationary Poisson processes, which average shock 

rate may be spatially uniform (Spatially Uniform Poisson, SUP) or variable (Spatially Variable 

Poisson, SVP). SUP and SVP can also be seen as independent models of seismicity occurrence to 

compare with other forecasting models (Console et al., 2006).  

Their rate density is given by:  

𝜆>(𝑥, 𝑦,𝑚) = 𝜇>(𝑥, 𝑦)𝛽 exp[−𝛽(𝑚 −𝑀3)] (C8) 

where 𝜇>(𝑥, 𝑦) is the space rate density of earthquakes with magnitudes equal or larger than 𝑀3. In 

the SUP model the space-density is assumed to be uniform and independent of the location (𝑥, 𝑦). 𝜇> 

is obtained by dividing the number of earthquakes with magnitude above 𝑀3 over the whole analysis 

region R by the total surface area considered.  

In the SVP model, the space density 𝜇>(𝑥, 𝑦) is considered as a continuous smooth function of the 

geographical location (𝑥, 𝑦). To estimate it as a space varying function it is necessary to divide the 

polygon in squared cells of suitable size. The number of earthquakes 𝑁@ with magnitude equal or 
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larger than 𝑀3  in each cell is estimated. Each 𝑁@  value, representative of a single cell is then 

smoothed by a Gaussian filter with correlation distance 𝑑3 and normalized so that to preserve the total 

number of events as described in Frankel (1995). For each cell, the smoothed 𝑁@ is given by  

𝑁�@ =
𝛴D𝑁@ exp\−𝛥@D= 𝑑3

=⁄ `
𝛴D exp\−𝛥@D= 𝑑3

=⁄ `
 

(C9) 

where 𝛥@D  is the distance between the center of the 𝑘RSand the 𝑙RS cells. To obtain 𝑁�@  in terms of 

number of events per unit of time and area, it must be divided by the total duration of the seismic 

catalogue and by the area of the cell. The value of 𝜇>(𝑥, 𝑦) in each point of the space is computed by 

the weighted mean of the four nearest cells that surround the point.  To determine 𝑑3 we follow the 

procedure suggested by Console and Murru, (2001):  the catalogue is divided in two sub-catalogues 

of about same temporal length and 𝑑3 is chosen as the value that maximize the log-likelihood of a 

sub-catalog using the smoothed seismicity obtained from the other sub-catalog (Fig A2). The analysis 

for the optimal 𝑑3 is conducted for both sub-catalogs and the obtained value for 𝑑3 are respectively 

𝑑3? = 16.0	and 𝑑3= = 13.0. The optimal correlation distance 𝑑3 = 14.5	is obtained by the mean of 

such the two estimations. Once optimized the value 𝑑3 the space density of earthquakes 𝜇>(𝑥, 𝑦)  of 

the SVP background model can be assessed for each cell and for each point in the space (Figure 2). 

The b-value of the Gutenberg and Richter (1944) distribution is the same computed for the EEPAS 

model as described in the main text. 

The parameter 𝑞 is set to 1.5 according to physical investigation  showing that the static stress changes 

decrease with epicentral distance as 𝑟HT  (Lombardi and Marzocchi 2010, . The other parameters  

(𝑘, 𝑝, 𝑐, 𝛼, 𝑑, 𝜈)  are fitted by the maximization of the likelihood function (eq. 20 of main text) using 

the interior point method .  
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Figures 

 
Figure 1: Epicenters of earthquakes with magnitude  ³ 2.5 occurred within the CPTI15 polygon 

(outer thick polygonal) between 1990 and 2021. The inner thick polygonal represents the forecasting 

area R. 
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Figure 2. Tessellation of the Italian territory region used for the fitting of parameters and for the 

retrospective experiment. The thick black line delimits the analysis region R. The cells that compose 

are only those within which  at least one earthquake with 𝑀 ≥ 4.0 from 1600 to 2021 have occured 

according to CPTI15 catalogue (Rovida et al. 2020) and have 30√2 km of side.  
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Figure 3 - Numbers of targets (mainshocks+aftershocks) in the testing set (2012-2021) predicted by various 

models using different time intervals. The effective total number of targets is 27. 

 

 
Figure 4 – Results of conditional likelihood consistency test (cL-test) in the testing set (2012-2021) for 

various models using different time intervals (mainshocks+aftershocks). Black bars indicate 95% 

confidence limits. 
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Figure 5 – Results of number consistency test (N-test) in the testing set (2012-2021) for various models 

using different time intervals (mainshocks+aftershocks). Black bars indicate 95% confidence limits. 

 

 

 
Figure 6 – Results of spatial consistency test (S-test) in the testing set (2012-2021) for various models 

using different time intervals (mainshocks+aftershocks). Black bars indicate 95% confidence limits. 
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Figure 7 – Comparison) between various models in different time intervals (mainshocks+aftershocks) in 

the testing set (2012-2021) by the IGPA (T-test). Black bars indicate 95% confidence limits. 

 

 

 

 
Figure 8 – Numbers of targets (mainshocks only) in the testing set (2012-2021) predicted by various models 

and time intervals. The effective total number of targets is 9. 
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Figure 9 – Results of conditional likelihood consistency test (cL-test) in the testing set (2012-2021) for 

various models using different time intervals (mainshocks only). Black bars indicate 95% confidence limits. 

 

 

 
Figure 10 – Results of number consistency test (N-test) in the testing set (2012-2021) for various models 

using different time intervals (mainshocks only). Black bars indicate 95% confidence limits. 
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Figure 11 – Results of spatial consistency test (S-test) in the testing set (2012-2021) for various models 

using different time intervals (mainshocks only). Black bars indicate 95% confidence limits. 

 

 
Figure 12 – Comparison between various models in different time intervals (mainshocks only) in the testing 

set (2012-2021) by the IGPA (T-test). Black bars indicate 95% confidence limits. Black bars indicate 95% 

confidence limits. 
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 Figure A1: Map of epicenters of earthquakes with 𝑀 ≥ 2.5 and 𝑍 ≤ 50𝑘𝑚 occurred from 1990 to 

2020 within the region involved for the Software codes comparison. The interior rectangular area 

represents the Analysis polygon for which the EEPAS model is applied. The black point represents 

the epicenters of earthquake occurred within the Analysis polygon. The external Rectangular 

represents the influence area for which earthquake indicated by the gray points are also considered 
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for the parameters estimation to avoid edge effects. The white squares represents target earthquake 

with  𝑀 ≥ 5.0 occurred within the analysis polygon in the period 1990-2020. 

 

 

Figure A2: On the top diagram the log-likelihood of the sub-catalog of earthquakes occurred in the 

period 1990- April 2009 under the time-independent SVP model obtained by the seismicity from 

April 2009 to 2021. On the bottom as the top figure but with the two time period for the sub-

catalogues inverted.   
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Tables 

Table 1- Estimated parameters for various models (mainshock + aftershocks) 
 

SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 

b 1.084 b 1.084 b 1.084 b 1.084 b 1.084 b 1.084 b 1.084 

  
𝑑! 14.50 a 0.615 a 0.615 a 0.615 K 0.028 K 0.031 

    
d 29.60 d 29.60 d 29.60 c 0.002 c 0.002 

    
s 9.0x10-13 s 9.0x10-13 s 9.0x10-13 p 1.005 p 1.022 

      
𝑎"  1.222 𝑎" 1.222 d 1.261 d 1.204 

      
𝑏" 1* 𝑏" 1* a 1.106 a 0.928 

      
𝜎"  0.246 𝑎" 0.243 q 1.5* q 1.5* 

      
𝑎# 2.553 𝑎# 2.720 fr 0.264 fr 0.294 

      
𝑏# 0.352 𝑏# 0.315 

  
𝑑! 14.50 

      
𝜎# 0.150 𝜎# 0.150 

    

      
𝑏$ 0.523 𝑏$ 0.508 

    

      
𝜎$  1* 𝜎$ 1* 

    

      
 µ 0.177  µ 0.159 

    
*Fixed or estimated independently. 

 

Table  2 – Performance estimators of various models in the learning time interval (1990-2011) 

(mainshock + aftershocks) 

 SUP  SVP   PPE  EEPAS-NW  EEPAS-W ETAS-SVP ETAS-SUP 

E 27 27.22 27 27.67 27.73 27.49 27.52 

lnL -524.63 -465.47 -514.11 -500.39 -496.06 -361.60 -363.60 

IGPE 0.00 2.19 0.39 0.90 1.06 6.04 5.96 

AIC 1051.3 934.9 1036.2 1026.8 1018.1 739.2 743.2 

 DAIC 0.00 2.15 0.28 0.45 0.61 5.78 5.70 

G 1.00 8.95 1.48 2.45 2.88 419.1 389.13 

 
 

Table 3- Estimated parameters for various models (mainshocks) 
 

SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 

b 1.176 b 1.176 b 1.176 b 1.176 b 1.176 b 1.176 b 1.176 

  
𝑑! 14.50 a 0.390 a 0.390 a 0.390 K 0.029 K 0.033 

    
d 32.73 d 32.73 d 32.73 c 0.002 c 0.003 

    
s 1.6x10-7 s 1.6x10-7 s 1.6x10-7 p 1.000 p 0.988 
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𝑎"  1.336 𝑎" 1.336 d 1.227 d 1.749 

      
𝑏" 1* 𝑏" 1* a 0.783 a 0.766 

      
𝜎"  0.200 𝑎" 0.201 q 1.5* q 1.5* 

      
𝑎# 1.350 𝑎# 1.357 fr 0.380 fr 0.316 

      
𝑏# 0.600 𝑏# 0.599 

  
𝑑! 14.50 

      
𝜎# 0.153 𝜎# 0.150 

    

      
𝑏$ 0.452 𝑏$ 0.483 

    

      
𝜎$  1.636 𝜎$ 1.453 

    

      
 µ 0.343  µ 0.357 

    
*Fixed or estimated independently. 

 

 

Table  4 – Performance estimators of various models in the learning time interval (1990-2011) 

(mainshocks) 

 SUP  SVP   PPE  EEPAS-NW  EEPAS-W ETAS-SVP ETAS-SUP 

E 12.00 12.19 11.99 14.26 14.75 12.01 11.97 

lnL -246.15 -237.68 -243.52 -239.92 -239.79 -209.75 -208.28 

IGPE 0.00 0.75 0.22 0.52 0.54 3.03 3.16 

AIC 494.30 479.37 495.04 505.84 505.40 435.49 432.57 

 DAIC 0.00 0.62 -0.03 -0.48 -0.46 2.45 2.57 

G 1.00 2.02 1.24 1.68 1.71 20.77 23.46 
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Table 5 - Numbers of earthquakes predicted by various models in the testing time interval 
(2012-2021) (mainshocks + aftershocks) 

Time interval SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP  ETAS-SVP 
3 Months 12.3 13.1 14.0 14.4 13.7 8.4 8.4 
6 Months 12.3 13.1 14.0 14.4 13.7 7.9 7.9 
1 Year 12.3 13.1 13.9 14.4 13.7 7.3 7.4 
5 Years 12.3 13.1 12.9 14.2 13.5 6.1 6.3 
10 Years  12.3 13.1 11.3 13.9 13.2 4.6 5.0 

 
 

 
 

 
Table 6 - Numbers of earthquakes predicted by various models in the testing time interval 

(2012-2021) (mainshocks) 
Time interval SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP  ETAS-SVP 
3 Months 5.46 5.86 5.41 6.02 6.06 4.23 4.47 
6 Months 5.46 5.86 5.40 6.02 6.06 4.02 4.22 
1 Year 5.46 5.86 5.38 6.01 6.05 3.81 3.97 
5 Years 5.46 5.86 5.18 5.92 5.96 3.18 3.22 
10 Years  5.46 5.86 4.82 5.51 5.57 2.95 2.93 
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Table A1: Estimated parameters, expected number of target earthquake and 
log-likelihood values for each iteration step.  

EEPSOF code 
1st step 2nd step (𝝈𝑻) 3rd step (𝝈𝑴) 4th step (𝒃𝑨) 5th step (𝒃𝑻) 

𝑎1 2.2264 𝑎1 2.2109 𝑎1 2.2204 𝑎1 2.2187 𝑎1 2.2173 
𝑎: 1.2295 𝑎: 1.2289 𝑎: 1.0165 𝑎: 1.0339 𝑎: 1.0141 
𝜎; 2.3893 𝜎; 2.3739 𝜎; 2.3360 𝜎; 1.2387 𝜎; 1.1125 
  𝜎1 0.2757 𝜎1 0.2696 𝜎1 0.2686 𝜎1 0.2683 
    𝜎: 0.4845 𝜎: 0.4820 𝜎: 0.4918 
      𝑏! 0.4899 𝑏! 0.5181 
        𝑏1 0.4021 
𝐿 -961.64 L -961.491 L -960.876 L -960.632 L -960.594 
𝐸� 40.8569 𝐸� 40.0899 𝐸� 39.7087 𝐸� 39.8445 𝐸� 39.5826 

MATLAB code 
1st step 2nd step (𝝈𝑻) 3rd step (𝝈𝑴) 4th step (𝒃𝑨) 5th step (𝒃𝑻) 

𝑎1 2.2190 𝑎1 2.2074 𝑎1 2.2118 𝑎1 2.2075 𝑎1 2.4950 
𝑎: 1.2188 𝑎: 1.2208 𝑎: 1.0477 𝑎: 1.0049 𝑎: 1.0025 
𝜎; 2.3929 𝜎; 2.3769 𝜎; 2.3456 𝜎; 1.0015 𝜎; 1.0097 
  𝜎1 0.2670 𝜎1 0.2603 𝜎1 0.2607 𝜎1 0.2652 
    𝜎: 0.4493 𝜎: 0.4771 𝜎: 0.4642 
      𝑏! 0.5413 𝑏! 0.5399 
        𝑏1 0.3236 

L -961.791 L -961.719 L -961.264 L -960.945 L -960.755 
𝐸� 41.222 𝐸� 40.6459 𝐸� 40.5468 𝐸� 40.6171 𝐸� 40.9646 

 

 

Supporting information  

 
 

Table S1 – Binary cL test in the testing time interval (2012-2021) (mainshocks + aftershocks) 
Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 
3 Months 0.001 0.002 0.007 0.008 0.005 0.000 0.000 
6 Months 0.001 0.002 0.005 0.007 0.004 0.000 0.000 
1 Year 0.001 0.002 0.004 0.005 0.004 0.000 0.000 
5 Years 0.001 0.002 0.002 0.006 0.004 0.000 0.000 
10 Years  0.000 0.002 0.000 0.003 0.003 0.000 0.000 

 
Table S2 – Binary N test in the testing time interval (2012-2021) (mainshocks + aftershocks) 

 
Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 
3 Months 0.0002 0.0005 0.0013 0.0019 0.0010 2.4x10-7 2.5x10-7 
6 Months 0.0002 0.0005 0.0013 0.0019 0.0010 8.0x10-8 8.9x10-8 
1 Year 0.0002 0.0005 0.0012 0.0019 0.0009 1.9x10-8 2.4x10-8 
5 Years 0.0002 0.0005 0.0004 0.0016 0.0008 4.4x10-10 9.5x10-10 
10 Years  0.0002 0.0005 0.0000 0.0011 0.0006 1.0x10-12 6.3x10-12 
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Table S3 – Binary S test in the testing time interval (2012-2021) (mainshocks + aftershocks) 

 
Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 
3 Months 0.095 0.084 0.598 0.415 0.443 0.821 0.593 
6 Months 0.613 0.090 0.589 0.416 0.452 0.837 0.602 
1 Year 0.277 0.091 0.581 0.415 0.441 0.818 0.549 
5 Years 0.083 0.085 0.434 0.358 0.393 0.680 0.297 
10 Years  0.092 0.009 0.148 0.283 0.344 0.785 0.190 

 
 

Table S4 – Information Gain per active bin in the testing time interval (2012-2021) 
(mainshocks + aftershocks) 

 
Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 
3 Months 0.00(7) 0.53(6) 0.54(5) 0.81(3) 0.73(4) 1.13(1) 1.08(2) 
6 Months 0.00(7) 0.55(3) 0.52(4) 0.82(1) 0.74(2) 0.43(6) 0.49(5) 
1 Year 0.00(7) 0.57(3) 0.54(4) 0.84(1) 0.76(2) 0.23(6) 0.37(5) 
5 Years 0.00(7) 0.62(3) 0.53(4) 0.89(1) 0.80(2) 0.06(6) 0.14(5) 
10 Years  0.00(7) 0.67(3) 0.46(4) 0.90(1) 0.81(2) -0.32(6) -0.15(5) 

 
 
 
 
 
 
 
 

Table S5 – Binary cL test in the testing time interval (2012-2021) (mainshocks) 
Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP  ETAS-SVP 
3 Months 0.071 0.087 0.070 0.114 0.112 0.033 0.033 
6 Months 0.070 0.085 0.068 0.105 0.110 0.022 0.021 
1 Year 0.072 0.077 0.070 0.112 0.108 0.013 0.016 
5 Years 0.072 0.080 0.053 0.921 0.099 0.004 0.004 
10 Years  0.075 0.077 0.037 0.073 0.079 0.002 0.002 
 

Table S6  – Binary N test in the testing time interval (2012-2021) (mainshocks) 
 

Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 
3 Months 0.102 0.139 0.098 0.155 0.159 0.029 0.039 
6 Months 0.102 0.139 0.097 0.154 0.159 0.022 0.029 
1 Year 0.102 0.139 0.096 0.154 0.158 0.016 0.020 
5 Years 0.102 0.139 0.080 0.145 0.149 0.005 0.006 
10 Years  0.102 0.139 0.057 0.107 0.111 0.003 0.003 

 
 
 
 

Table S7 – Binary S test in the testing time interval (2012-2021) (mainshocks) 
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Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 
3 Months 0.568 0.159 0.710 0.631 0.641 0.877 0.637 
6 Months 0.765 0.160 0.711 0.632 0.641 0.881 0.627 
1 Year 0.709 0.158 0.695 0.628 0.640 0.869 0.587 
5 Years 0.662 0.161 0.623 0.605 0.611 0.860 0.497 
10 Years  0.567 0.162 0.484 0.509 0.536 0.824 0.389 

 
 

Table S8 – Information Gain per active bin in the testing time interval (2012-2021) 
(mainshocks) 

 
Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 
3 Months 0.00(7) 0.22(5) 0.18(6) 0.42(3) 0.36(4) 0.51(2) 0.63(1) 
6 Months 0.00(7) 0.25(5) 0.20(6) 0.45(1) 0.39(2) 0.27(4) 0.37(3) 
1 Year 0.00(7) 0.28(3) 0.23(4) 0.75(1) 0.42(2) 0.06(6) 0.17(5) 
5 Years 0.00(7) 0.36(3) 0.27(4) 0.52(1) 0.47(2) -0.07(6) 0.01(5) 
10 Years  0.00(7) 0.39(3) 0.27(4) 0.52(1) 0.50(2) -0.13(6) -0.07(5) 
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Earthquake catalogs describe the distribution of earthquakes in space, time, and mag-
nitude, which is essential information for earthquake forecasting and the assessment
of seismic hazard and risk. Available high-resolution (HR) catalogs raise the expect-
ation that their abundance of small earthquakes will help better characterize the fun-
damental scaling laws of statistical seismology. Here, we investigate whether the
ubiquitous exponential-like scaling relation for magnitudes (Gutenberg–Richter
[GR], or its tapered version) can be straightforwardly extrapolated to the magni-
tude–frequency distribution (MFD) of HR catalogs. For several HR catalogs such as
of the 2019 Ridgecrest sequence, the 2009 L’Aquila sequence, the 1992 Landers
sequence, and entire southern California, we determine if the MFD agrees with an
exponential-like distribution using a statistical goodness-of-fit test. We find that
HR catalogs usually do not preserve the exponential-like MFD toward lowmagnitudes
and depart from it. Surprisingly, HR catalogs that are based on advanced detection
methods depart from an exponential-like MFD at a similar magnitude level as net-
work-based HR catalogs. These departures are mostly due to an improper mixing
of different magnitude types, spatiotemporal inhomogeneous completeness, or
biased data recording or processing. Remarkably, common-practice methods to find
the completeness magnitude do not recognize these departures and lead to severe
bias in the b-value estimation. We conclude that extrapolating the exponential-like
GR relation to lower magnitudes cannot be taken for granted, and that HR catalogs
pose subtle new challenges and lurking pitfalls that may hamper their proper use. The
simplest solution to preserve the exponential-like distribution toward low magni-
tudes may be to estimate a moment magnitude for each earthquake.

Introduction
Enriching seismic catalogs with smaller earthquakes (i.e.,
below M 2.0) offers many benefits due to the higher spatio-
temporal resolution of seismicity (Ebel, 2008; Brodsky, 2019).
For example, such microearthquakes help identify the loca-
tion and extent of active faults (e.g., Fischer and Horálek,
2003; Waldhauser et al., 2004; Chiaraluce et al., 2007;
Piccinini et al., 2009; Improta et al., 2019), allow faster
and/or new inferences about seismotectonic processes (e.g.,
Hatzfeld et al., 2000; Bohnhoff et al., 2006; Bulut et al.,
2009; Valoroso et al., 2013; Marzorati et al., 2014; Hainzl et al.,
2016; Meng and Peng, 2016; Shelly et al., 2016; Ross et al.,
2020), and provide potentially better conditions for seismicity
and hazard analyses with their application to forecasting
models (e.g., Wiemer and Schorlemmer, 2007; Werner et al.,
2011; Mignan, 2014; Tormann et al., 2014; Gulia and
Wiemer, 2019).

With the increasing availability of high-resolution (HR)
earthquake catalogs, these expectations might easily be taken
for granted. Their refined locations suggest an improved res-
olution, whereas their abundance of smaller events suggests an
improved completeness. Scientists may be tempted to blindly
assume that the popular Gutenberg–Richter (GR) scaling rela-
tion, or its tapered version (TGR), observed in ordinary earth-
quake catalogs (i.e., older network-based catalogs that span a
limited range of magnitudes), holds also in the low-magnitude
range of HR catalogs.

Many seismicity studies use the magnitude–frequency dis-
tribution (MFD) to estimate seismicity rates and the b-value
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(the slope of the GR relation), from which the occurrence
probability of larger events and eventually the seismic hazard
and risk can be inferred. The earthquake magnitude is usually
expected to follow an exponential-like distribution according
to the unbounded, TGR, and truncated GR relation when the
maximum (corner) magnitude is about ≥Mc � 3 (Marzocchi
et al., 2020), in which Mc is the lower magnitude cutoff, or
magnitude of completeness. (In the following, we refer to
“exponential-like” simply as “exponential.”) An exponential
distribution above Mc is a necessary and sufficient condition
to calculate the b-value (Marzocchi et al., 2020)—otherwise,
the physical meaning of the b-value becomes questionable.
Various methods exist to determine Mc (e.g., Wiemer and
Wyss, 2000; Wössner and Wiemer, 2005; Amorèse, 2007;
Schorlemmer and Woessner, 2008; Mignan and Wössner,
2012) or to model the full MFD including the incomplete part
(Kĳko and Smit, 2017; Martinsson and Jonsson, 2018; Mignan,
2019), but the exponential property of the MFD is rarely
verified through canonical statistical tests.

Several factors can significantly alter MFDs and produce arti-
facts that bias any inferred estimate. It is generally well known
that artificial changes in the reporting of magnitudes (e.g., due to
recalibrations or changing seismic networks) may affect the
homogeneity of catalogs (Habermann, 1987; Zúñiga and
Wyss, 1995; Tormann et al., 2010; Kamer and Hiemer, 2015)
and that major earthquakes lead to marked under-reporting
of small events shortly after (Kagan, 2004; Helmstetter et al.,
2006; Hainzl, 2016; de Arcangelis et al., 2018). Moreover, a sin-
gle uniform magnitude scale is not always possible for several
practical reasons (Kanamori, 1983), so that HR catalogs often
mix different kinds of magnitudes, which may have different
nonexponential MFDs. For instance, the local magnitude, ML,
has an exponential scaling only in a limited magnitude range: it
begins to saturate for large magnitudes (aboveM 6) (Kanamori,
1983) due to the Wood–Anderson instrument response acting
as a high-pass filter (Bormann and Saul, 2009), and it breaks in
scale around M 2–4 due to the anelastic attenuation in the
medium acting as a low-pass filter (Bethmann et al., 2011;
Munafò et al., 2016; Deichmann, 2017).

Here, we take a closer look at MFDs of currently available
HR catalogs that span more than six orders of magnitude,
examining different (1) spatiotemporal scales (individual
sequences vs. entire southern California), (2) temporal states
(2019 Ridgecrest vs. 1992 Landers sequence), and (3) tectonic
environments (southern California vs. Italy). We analyze
whether their MFDs agree with an exponential TGR distribu-
tion (referring to this agreement as “consistency” hereinafter)
and explore whether inconsistencies can be detected through
common-practice methods to estimate the parameters of the
TGR distribution (Mc and b-value). Understanding in more
detail whether, how, and why MFDs of available HR catalogs
are inconsistent is fundamental to use them correctly in
statistical seismology.

Catalogs and Statistical Methods
For southern California, we consider the following earthquake
catalogs (see Data and Resources for accessed repositories):

• Southern California Seismic Network (SCSN) catalog
(Hutton et al., 2010; Southern California Earthquake Data
Center [SCEDC], 2013);

• U.S. Geological Survey’s Advanced National Seismic System
(USGS-ANSS) ComCat;

• Hauksson et al. (2012), containing relatively relocated hypo-
centers of SCSN events;

• quake template matching (QTM; Ross, Trugman, et al.,
2019), based on template matching (TM) using SCSN events
as template set; and

• three dedicated catalogs for the Ridgecrest sequence (Ross,
Idini, et al., 2019; Lee et al., 2020; Shelly, 2020b) based on
TM using SCSN events as templates.

For the 2009 L’Aquila, Italy, sequence, we use the HR cata-
log of Valoroso et al. (2013) (see Data and Resources). We only
focus on the magnitude information contained in these cata-
logs. All catalogs have a magnitude discretization, or binning,
of ΔM � 0:01.

To analyze their MFDs, we calculate themost relevant param-
eters for an exponential distribution, that is, Mc and the
b-value. At first, we apply two commonMc estimation methods
(Mignan and Wössner, 2012): (1) the maximum curvature
method (Wiemer and Wyss, 2000) that uses the mode of the
MFD; we include a correction of �0:2 magnitude units
(Wössner and Wiemer, 2005), hereinafter referred to as
MMAXC

c ��0:2�; and (2) median-based analysis of the segment
slope method (Amorèse, 2007) that detects a change point; we
use the 2σ confidence interval (∼95%) of a 1000-sample boot-
strap distribution as the final estimate, hereinafter referred to as
MMBASS

c ��2σ�. To enhance the stability of both methods, we
apply them to magnitudes rounded to one decimal place. The
b-value is estimated with a bias-free maximum-likelihood
method (Tinti and Mulargia, 1987; Marzocchi and Sandri, 2003;
Marzocchi et al., 2020), but only for sample sizes of 100 or larger.

At the same time, we assess whether the magnitude is expo-
nentially distributed using the canonical goodness-of-fit test of
Lilliefors (1969). Only a goodness-of-fit test can indicate whether
data follow a certain distribution (Clauset et al., 2009). The
Lilliefors test is a modification of the Kolmogorov–Smirnov (KS)
one-sample test to be used when the parameters of the distribu-
tion are unknown and need to be estimated from the sample.
(This test is the same as the often termed “modified KS test”
referring to either Stephens, 1974 or Pearson and Hartley,
1972, which are based on extensive and revised Monte Carlo
[MC] simulations compared with Lilliefors, 1969; our test statis-
tic is similarly based on an extensive MC simulation with 10 mil-
lion replications; see Data and Resources.) Because the
exponential distribution is a continuous probability distribution,
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the 0.01-binned magnitudes are transformed into a continuous
random variable by adding uniformly sampled random noise
U�− ΔM

2 ; ΔM2 �. For 0.01-binned magnitudes, the added uniform
noise does not affect significantly the exponentiality of the dis-
tribution up to sample sizes of at least one million, as confirmed
by Lilliefors test simulations (not shown). The Lilliefors test is
performed as a function of Mc for 50 initializations of the ran-
dom noise, from which we obtain an average p-value, pM , at each
magnitude bin. The p-value expresses the probability to observe
the data sample assuming the null hypothesis is true (here, the
exponential distribution). According to Ronald Fisher’s original
interpretation, it measures the strength of evidence against the
null hypothesis. It is worth remarking that our application can-
not be seen as a formal statistical test because of this recursive
testing but is used to highlight significant departures from the
exponential GR relation. We use pM with a significance level
of α � 0:1 to obtain the lowest magnitude level above which
the MFD can be considered exponential, hereinafter referred
to as the Lilliefors-based magnitude of completeness, MLilliefors

c .
Choosing α � 0:1 is conservative in a statistical sense
(Clauset et al., 2009); less conservative choices α < 0:1 increase
the probability to not reject models that have only a very small
chance to follow an exponential distribution. To improve stabil-
ity, pM must exceed α for at least five consecutive magnitude
bins, in which case the first exceedance, that is, the lowest mag-
nitude bin, yields the eventual MLilliefors

c .
Departures from the exponential distribution can occur either

over a magnitude range or intermittently at various magnitude
levels. To facilitate identifying and characterizing MFD inconsis-
tencies, we determine the slope of the MFD (i.e., the b-value) as a
function of Mc. Although the b-value of nonexponential MFDs
does not have a physical meaning, a systematic dependence on
Mc provides clues on the kind of MFD inconsistency.

We do not discuss the existence of various nonexponential
MFDs for individual fault segments, such as the characteristic
earthquake model (Schwartz and Coppersmith, 1984), which
should not present significant differences from an exponential
distribution if the characteristic magnitude is much larger
than Mc.

Results
Ridgecrest sequence
We first compare the magnitude statistics of the relocated
Hauksson et al. (2012) catalog to the original SCSN catalog
for the Ridgecrest sequence (see Fig. 1a–c) within the time
range 1 April–31 December 2019 and a distance of 100 km
from the mainshock. The MFD of both catalogs is very similar
(gray and yellow in Fig. 1a), because the Hauksson et al. (2012)
catalog takes over the magnitudes of SCSN and is a subset
thereof. Both MFDs feature a discontinuity around M 3.5,
which has a strong influence on the b-value (see the abrupt
change for Mc ≥ 2:8 in Fig. 1b), which peaks at M 3.44 with
a b-value of ∼1:2. Below M 3.5, the Lilliefors p-values

(Fig. 1c) indicate a rejection of exponentiality for both catalogs.
The composition of SCSN magnitude types in terms of their
MFD (red, blue, and green in Fig. 1a) reveals that the disconti-
nuity is caused by an improper merging of the local (ML) and
moment magnitude (Mw) scale (see the Discussion section).
MLilliefors

c � 3:54 accounts for this discontinuity, whereas
MMAXC

c ��0:2� � 1:10 and MMBASS
c ��2σ� � 1:51 do not and

are much lower. The latter two do not comply with the
assumed exponential distribution of the GR relation and lead
to biased b-value estimates (Fig. 1b). The b-value below M 3.1
(smaller than 1) is considerably different from the one between
M 3.1 and 3.6 (well above 1), and above M 3.6 (around 1.05).

The dedicated catalogs for the Ridgecrest sequence with even
higher resolution (Ross, Idini, et al., 2019; Lee et al., 2020; Shelly,
2020b) are affected by the same inconsistency (Fig. 1d–f). We
restricted all three catalogs—and the SCSN catalog for compari-
son—to their common spatiotemporal window: 4 July 2019
15:35 (2 hr prior to the M 6.4 foreshock) until 17 July 2019
(∼11 days after the M 7.1 mainshock), within a radius of
37 km from the coordinate 35.74° N, 117.54° W (approximately
in the middle of both hypocenters). For the Ross, Idini, et al.
(2019) catalog, the Lilliefors p-values (Fig. 1f) reveal that the
exponentiality cannot be rejected around Mc � 1:8 and above
Mc � 3:5, but it is rejected in between (Mc � 2:0–3:5). This
indicates that this catalog has two different exponential distri-
butions with distinct b-values: a first between ∼M 1.8 andM 3.5
containing ∼95% of the data above ∼M 1.8, dominated by the
ML scaling (b-value about 0.8); and a second aboveM 3.5 when
the discontinuity is overcome, dominated by the scaling of Mw

and MLr (b-value about 1.0). Because of the short-lived expo-
nentiality (i.e., no persistent exponentiality with increasing Mc)
far below the discontinuity,MLilliefors

c could mislead as it does not
relate to the exponential distribution of the largest events but to
a secondary one of the smaller events. The MFD of the Shelly
(2020b) catalog shows a similar behavior with increased p-values
around Mc � 2:0, albeit not exceeding the significance level;
MLilliefors

c is above the discontinuity and similar to the SCSN
catalog. The Lee et al. (2020) catalog shows a short-lived
exponentiality just below the discontinuity as indicated by
MLilliefors

c � 3:16, which means that the discontinuity around
M 3.5 is reduced compared with the other catalogs—but it is
unclear why. The b-value at MLilliefors

c � 3:16 (about 1.05) is
comparable with the one for Mc > 3:6 (Fig. 1e)—a coincidence
because it remains anomalous in between. For all catalogs,
MMAXC

c ��0:2� and MMBASS
c ��2σ� again yield underestimated

(i.e., overconfident) completeness magnitudes, which do not
comply with the exponential assumption.

Landers sequence
Inspecting the Landers sequence as an example for an older
catalog period shows that it is composed of even more mag-
nitude types, each having different nonexponential MFDs
(Fig. 2a). Most notably, the coda amplitude-based magnitude,
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Mcoda, is overrepresented below M 3.0, whereas the helicorder
or hand magnitude, Mh, mixes differently binned magnitudes
(0.5, 0.1, and 0.01). These two magnitude types considerably
affect the estimated b-value of the overall catalog as a function
ofMc (Fig. 2b):Mcoda raises the b-value forMc � 2:0–3:0 com-
pared with Mc > 3:0, whereas Mh results in distinct
b-value jumps due to the irregular binning, especially in 0.5
magnitude steps noticeable up to Mc � 4:0. The 0.5 binning
of Mh causes the overall MFD to be nonexponential for
Mc � 3:2–3:5 and again briefly for Mc � 4:0 (Fig. 2c).
Below M 3.0, the MFD is not exponential anymore due to
the combined effects of Mh and Mcoda and the b-value is over-
estimated. The common completeness estimation methods
with MMAXC

c ��0:2� � 1:70 and MMBASS
c ��2σ� � 2:33 would

result in such a biased b-value because they again do not com-
ply with the exponential assumption.

Regional catalog of southern California
We further investigate whether the MFD of a regional seismic
catalog is inconsistent (Fig. 3). We compare the 10 yr QTM
catalog (Ross, Trugman, et al., 2019) with the SCSN catalog

for 2008–2017 to obtain the contributing magnitude types.
ML and Mw merge around M 4.4 (Fig. 3a), but its impact
on the b-value is too uncertain because of too few data. Yet,
the merging might be the reason for the p-value decrease

(a)

(b)

(c)

(d)

(e)

(f)

Helicorder or Hand

Figure 1. Magnitude statistics of the 2019 Ridgecrest sequence
using various catalogs. Panels (a–c) relate to nine-month data
extracts (see the Ridgecrest Sequence section) of the Southern
California Seismic Network (SCSN) and Hauksson et al. (2012)
catalog, including the underlying composition of magnitude
types; panels (d–f) relate to three template-matching-based (TM-
based) catalogs (Ross, Idini, et al., 2019; Lee et al., 2020; Shelly,
2020b) and the SCSN catalog in their common spatiotemporal
window (see the Ridgecrest Sequence section). (a and d) The
catalogs in terms of their magnitude–frequency distribution
(MFD). Panels (b and e) and (c and f) show, as a function of lower
magnitude cutoff, or magnitude of completeness, Mc, the b-
value (the slope of the fitted Gutenberg–Richter relation), and
the Lilliefors p-value (assuming an exponential distribution as null
hypothesis), respectively. Different estimates of Mc are indicated
in panels (a,d) and (b,e) (see legend and the Ridgecrest Sequence
section). Each inset in those rows magnifies the enframed section
of the plot area.
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around Mc ≈ 4:4 (Fig. 3c). The
Mh magnitude—especially its
0.1 binning—causes some
irregularities and fluctuations
in the b-value below M 3.5.

The QTM catalog has the
same MLilliefors

c as SCSN
(M 3.24), which implies that
QTM does not comply with an
exponential distribution to
lower magnitudes. This finding
is similar to the Ridgecrest
sequence (Fig. 1d–f), but with-
out the lower magnitudes hav-
ing a distinct secondary
exponential distribution.
Below MLilliefors

c , the MFD
gradually curves toward low
magnitudes, accompanied by
continuously decreasing b-val-
ues. MMAXC

c ��0:2� and
MMBASS

c ��2σ� again do not
comply with the exponential
assumption and differ much
more from MLilliefors

c than in
the catalogs for the individual
sequences.

Particular attention must be
paid to the “reloc” subset of
the QTM catalog; it excludes
many events (such as the 2010
M 7.2 Baja California Sierra El
Mayor–Cucapah event). As a
consequence, the b-value
diverges from the SCSN catalog
for Mc > 3. This subset should
be used with great care for stat-
istical analyses because its MFD
is apparently not a good repre-
sentation of the actual MFD.

We also investigate temporal
changes in the proportion of
magnitude types for southern
California. Figure 4 summarizes
these proportions for the peri-
ods of the SCSN catalog ana-
lyzed previously. The 1999
M 7.1 Hector Mine sequence
was added as an intermediate
temporal sample. (For the sake
of completeness, we have also
applied the MFD analysis to
the Hector Mine sequence; see

Hauksson (2012), v2020

Hauksson (2012), v2020

Hauksson (2012), v2020

Helicorder 
or Hand

Helicorder or Hand
Local

None

Coda

Coda

Coda

Body wave
Moment

(a)

(b)

(c)

Figure 2. Magnitude statistics of the 1992 Landers sequence using 1 yr of data (1 March 1992 until
28 February 1993, within 100 km from the mainshock). Analogous to Figure 1a–c, panel (a) shows
catalog data in terms of their magnitude–frequency distribution; panels (b) and (c) show the b-
value and the Lilliefors p-value as function of Mc. In addition, panel (b) shows the b-value as
function of Mc for three dominating magnitude types (see legend).
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Fig. S3 and Text S2 in the sup-
plemental material, available to
this article.) The most apparent
change over time is the gradual
replacement of both Mcoda and
Mh by ML. Simultaneously, ML

gets replaced by Mw as can
be seen from the individual
MFDs (Figs. 1d, 2a, and 3a
and Fig. S3a). As a consequence
of the changing magnitude pro-
portions over time, the magni-
tude types merge at different
magnitude levels, which may
cause one or more discontinu-
ities as shown earlier. We sum-
marize those in Text S1 for the
four analyzed periods of the
SCSN or Hauksson et al.
(2012) catalog.

Figure 5 shows that the time
dependence of the discontinu-
ities propagates to MLilliefors

c ,
making it time dependent as
well. MLilliefors

c is elevated during
1985–1995 and again from 2010
onward compared to 1980–
1985 and 1995–2010. Figure S1
shows the same analysis for 2 yr
time intervals in whichMLilliefors

c

fluctuates more strongly; its
highest estimates typically
dominate the respective 5 yr
interval in Figure 5. These esti-
mates matchMLilliefors

c found for
the individual sequences and
entire southern California in
2008–2017 (filled symbols in
Fig. 5). For comparison,MMAXC

c

and MMBASS
c generally decrease

over time, reflecting that smaller
events are increasingly being
added to the catalog. In the last
5 yr catalog period,MLilliefors

c dif-
fers from both MMAXC

c and
MMBASS

c by ∼2:5 magnitude
units, highlighting again their
discrepancy already found for
the Ridgecrest sequence.

It should be noted that the
USGS-ANSS ComCat, which
depends on SCSN as a regional
seismic network, inherits the

(a)

(b)

(c)

Figure 3. Magnitude statistics for catalog data of entire southern California in 2008–2017, the time
period of the quake template matching (QTM) catalog (Ross, Trugman, et al., 2019) (“QTM (full),”
dark gray). Its subset of only relocated events (“QTM (reloc)”) is shown in light gray. Analogous to
Figures 1 and 2, panel (a) shows catalog data in terms of their magnitude–frequency distribution;
panels (b) and (c) show the b-value and the Lilliefors p-value as function of Mc.
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same magnitude composition (see Fig. S2) and therefore the
same inconsistencies outlined previously.

L’Aquila sequence
The HR catalog of Valoroso et al. (2013) for the L’Aquila
sequence suffers from a similar apparent overrepresentation
of low-magnitude events as observed for the Landers sequence.
Here, it is the single cause for the rejection of the exponential
distribution below MLilliefors

c � 1:81 (see Fig. 6, black curve).
We investigated the catalog within consecutive nonoverlapping
time windows (indicated in Fig. S4) and found a time-dependent
degree of overrepresentation (Fig. 6a, colored MFDs): It is not
evident in the first four days (red) but starts to appear in the
subsequent week (yellow) and is more dominant for the follow-
ing time periods after about 1.5 weeks after the mainshock
(green, blue, and dark blue). Accordingly, the b-value below
MLilliefors

c � 1:81 becomes exceptionally overestimated at these
later times (Fig. 6b). TheMFD of the whole catalog (black curve)
below MLilliefors

c mixes the MFD behavior in the individual time
windows: the overall overrepresentation is weaker than in the last
periods but greater than in the initial periods. This compensation
effect also applies to the b-value below MLilliefors

c (Fig. 6b).
The overconfident MMAXC

c ��0:2� and MMBASS
c ��2σ�

point to a completeness magnitude in which the b-value is max-
imally biased, whereas MLilliefors

c yields a b-value of about 1.0.
Although the b-values differ among the individual time periods
at this magnitude level (see inset of Fig. S4b), the uncertainty
estimates indicate that they are not significantly different from
1.0. (Only a 1σ, i.e., 68%, confidence interval is shown.)

For the sake of completeness, we performed the time-win-
dow analysis for the Ridgecrest sequence using the catalog of
Hauksson et al. (2012) (Figs. S5 and S6) and Ross, Idini, et al.
(2019) (Figs. S7 and S8), and for the Landers sequence (Figs. S9
and S10). The analyses of both catalogs for the Ridgecrest
sequence show that MFDs of the earliest, mostly incomplete,
period are much more curved than MFDs of later periods. The
MFDs of later periods appear exponential down to M 1.5
mostly because they are more complete, but partly because
the discontinuity around M 3.4 is undersampled and barely
noticeable. Yet, the Lilliefors test still detects the discontinuity

and results in short-lived rejections below it (Figs. S6c and
S8c). The earliest period is the most active, and its MFD shape
dominates the overall MFD (e.g., it contains more M > 2:5
events than all other periods combined). For the Landers
sequence, the individual MFDs behave similar to the
L’Aquila sequence: the early period tends to a lower b-value,
whereas the later periods increase in b-value with decreasing
Mc below MLilliefors

c .

Discussion
In all inspected HR catalogs, the exponential distribution does
not hold toward low-magnitude ranges. This undesired short-
coming applies to both sequence-based and regional catalogs.
Noteworthy, common completeness estimation methods (such
as MAXC and MBASS) cannot capture these departures,

Local Coda amplitude Helicorder/hand Moment Revised local None Coda dura�on Body wave

Ridgecrest 2019

2008–2017

Hector Mine 1999

Landers 1992

Propor�on (%)

Figure 5. Estimates of Mc using three different methods for 5 yr
intervals of the (Hauksson et al., 2012) catalog. The symbols are
aligned with the midpoint of each time interval. For comparison,
MLilliefors

c estimated for four individual periods of this catalog
(Figs. 1–3 and Fig. S3) are indicated with filled symbols; the
horizontal whiskers relate to their time span.

Figure 4. Proportion of magnitude types for different temporal
periods of the SCSN catalog. Magnitude types are sorted by the
order given in the legend. The subfigure in the right zooms into
the 99%–100% range.
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leading to (1) Mc that do not
comply with the exponential
distribution and (2) biased b-
values that do not describe
the magnitude distribution of
the largest events adequately.
It is already known that the
MAXC method may under-
estimate Mc (Wössner and
Wiemer, 2005; Mignan et al.,
2011) unless spatiotemporally
confined samples are used
(not the focus of our study).
The MBASS method is consid-
ered to estimate Mc more con-
servatively (Mignan and
Wössner, 2012). Here, we
showed that these two methods
provide much lower Mc esti-
mates than the Lilliefors test
in every investigated HR cata-
log, which strongly affects the
estimated b-value. For TM-
based catalogs in particular,
MLilliefors

c is either equal to the
one of the network-based cata-
log (Fig. 3), or it indicates that
the exponential MFD of small
events differs from the one of
larger events (Fig. 1d–f). Both
cases imply that adding more
small earthquakes with
advanced detection methods
does not preserve the exponen-
tial shape of the MFD.

According to our observa-
tions, HR catalogs should
be used with caution for
estimating any property of
the MFD. In the following,
we discuss the different
kinds of MFD inconsistencies,
when they compensate, and
how to possibly over-
come them.

Different kinds of MFD
inconsistency and their
origin
Our findings show that MFD
inconsistencies have different
origins and may be divided
into three categories.

(a)

(b)

(c)

Figure 6. Magnitude statistics of the 2009 L’Aquila, Italy, sequence using the catalog of Valoroso
et al. (2013). The colored curves relate to periods of the catalog in nonoverlapping time windows
after the mainshock (see legend and Fig. S3). Accordingly, the last time window starts about 3.3
months after the mainshock. Analogous to Figures 1–3, panel (a) shows catalog data in terms of
their magnitude–frequency distribution; panels (b) and (c) show the b-value and the Lilliefors
p-value as function of Mc.
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The first category contains MFDs with abrupt discontinu-
ities; we observed those specifically in catalogs for the
Ridgecrest sequence and entire southern California. These dis-
continuities are due to the mixture of different magnitude
types. Because the magnitude composition changes over time
for southern California, one or more discontinuities can occur
at different magnitude levels (especially betweenML vs.Mw for
more recent catalogs, and betweenMcoda vs.ML for older cata-
log periods). The revised local magnitude (MLr) introduced by
SCSN for 2016 onward to bring both ML and Mw “into closer
agreement” (SCEDC, 2016) apparently does not solve the issue
or is not sufficient. It remains to be seen whether TM-based
catalogs could become exponential down toM 2.0 without this
discontinuity. For older catalog periods, a culprit for disconti-
nuities is the irregular and mostly coarse binning of Mh.

Besides abrupt changes, MFDs can change gradually in
slope toward low magnitudes. The second category is com-
posed of MFDs characterized by an overrepresentation of
low magnitudes with respect to an exponential distribution,
as observed for Landers and L’Aquila. For Landers, it could
be attributed to the Mcoda scale. Although we cannot inspect
the origin of this kind of inconsistency, we suspect that it is
caused by data recording or processing issues leading to inap-
propriate magnitude estimates. Overrepresentation results in
an increasing b-value with decreasing Mc. Like many catalog
inconsistencies, this effect can induce fake time variations of
the b-value (Fig. 6b and Fig. S9b), especially when obtained
with common completeness estimation methods. The observed
time dependence of this inconsistency can be explained with
the improved completeness over time. Because low magnitudes
are overrepresented compared with higher ones, their increas-
ing contribution to the catalog over time makes the inconsis-
tency more prevalent, changing the b-value.

The third category is composed of MFDs characterized by
an underrepresentation of low magnitudes with respect to an
exponential distribution. Underrepresentation (i.e., a gradual
curvature in the MFD; Mignan, 2012) results in a continuously
decreasing b-value with decreasingMc. This effect is very dom-
inant in more recent catalog periods for southern California
including the TM-based catalogs. The explanation of under-
representation is probably more challenging. We argue that
the most likely origin is the mixture of spatiotemporally inho-
mogeneous (in)completeness. As shown for the sequences
(Fig. 6 and Figs. S4–S10), the effect is dominant immediately
after a large earthquake and vanishes over time, which is com-
monly known as short-term aftershock incompleteness (STAI,
Kagan, 2004; Helmstetter et al., 2006; Hainzl, 2016; de
Arcangelis et al., 2018). For instance, Kagan (2004) estimated
that up to 28,000 early aftershocks after the Landers mainshock
are missing (or two-thirds of M 2 events). Our observations
corroborate the hypothesis of underreporting low-magnitude
events. As other scientists have pointed out (Wiemer and
Wyss, 2000; Wössner and Wiemer, 2005; Mignan et al.,

2011), a gradual curvature in regional catalogs (Fig. 3) can
additionally arise from the spatial inhomogeneity of complete-
ness due to the varying seismic network density. The contri-
bution of the temporal evolution of the network is maybe a
weaker factor, because MMAXC

c ��0:2�, which is related to
the strongest curvature in the MFD, decreases only marginally
in the period from 2005–2010 to 2015–2020 (see Fig. 5).

In our observations, even TM-based methods can appa-
rently not sufficiently improve the underreporting (Figs. 1
and 3)—possibly due to their selectiveness, that is, strong
dependence on events in the network-based catalog. To inves-
tigate the influence of temporal incompleteness, we removed
the period in which STAI is most evident—(until four days
after the M 7.1 Ridgecrest mainshock; see Figs. S11 and S12).
Accordingly, a strong gradual curvature remains in the MFDs
and MLilliefors

c of the TM-based catalogs is very close to the one
of the network-based catalogs at Mc ≈ 1:65 (except for the
Shelly, 2020b catalog). This proximity indicates that (1) the
abundance of small earthquakes from advanced detection
methods does not necessarily make the MFDmore exponential
toward low magnitudes even in a more complete period; and
(2) the underrepresentation in HR catalogs may last well
beyond the short-term incompleteness. Moreover, these
MLilliefors

c relate only to short-lived exponentiality (Fig. S12c).
When removing the first about nine days after theM 7.1 main-
shock (see Figs. S13 and S14),MLilliefors

c improved for the SCSN
and Ross, Idini, et al. (2019) catalog to 1.34 and 0.90, respec-
tively. The former change indicates an improved completeness
and the latter relates again to a short-lived exponentiality
(Fig. S14c). Worthy of note, incompleteness is not detected
by the common methods to estimate Mc; even after removing
STAI, their estimates are lower thanMLilliefors

c , especially for the
TM-based catalogs, leading to strongly biased b-values
(Fig. S14b).

An additional explanation for the apparent underrepresen-
tation of low magnitudes (which does not preclude the pre-
vious ones) is the scaling break of the (amplitude-based)
local magnitude ML, which, as shown by several studies (e.g.,
Bakun, 1984; Hanks and Boore, 1984; Ben-Zion and Zhu, 2002;
Edwards et al., 2010; Zollo et al., 2014; Staudenmaier et al.,
2018; Lanzoni et al., 2019), scales differently with Mw below
M 2–4 (withML ∝ 1:5Mw) due to the attenuation of the higher
frequency content in the medium (i.e., their corner frequencies
remain constant) (Bethmann et al., 2011; Munafò et al., 2016;
Deichmann, 2017). Antialiasing in the digital sampling process
(an additional low-pass filter) can contribute to the scaling
break (Uchide and Imanishi, 2018). Finally, we argue that even
when accounting for this scaling break, a gradually curved
MFD at very low magnitudes may remain, for example, as
observed for induced seismicity (Herrmann et al., 2019).
Underrepresentation may, therefore, be further related to
underlying physical processes such as a minimum rupture size
(see also Ellsworth, 2019).
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Apparent compensation of inconsistencies
Sometimes, the over- and underrepresentation can cancel out
and lead to an apparently (and unknowingly) wider exponen-
tial MFD when choosing an unfortunate time window, so that
both effects are approximately in balance. For the entire
southern California region, such a compensation can happen,
for instance, in the period 1992–2018 (Fig. 7a–c). (We did not
include the period after 2019 due to the inconsistency atM 3.5
outlined for the Ridgecrest sequence.) The compensation gives
the impression of an apparent validity of the exponential GR
relation at Mc ≈ 2:5, although MLilliefors

c of the two individual
time periods is higher (∼3:0 and 3.25, respectively). A similar
compensation may happen for the sequence-specific catalogs
of L’Aquila and Landers, when the underrepresentation at
early times after the mainshock due to STAI cancels out with
the later overrepresentation. For L’Aquila, MLilliefors

c reaches its
lowest level for a time window of 64 days after the mainshock
(gray in Fig. 7d–f). For shorter or longer time windows of the
aftershock sequence, the under- and overrepresentation domi-
nates, respectively.

These compensation effects are an unfortunate consequence
of the mixture of different nonexponential MFDs. It remains
uncertain whether they can correct for the low-magnitude
inconsistencies. Possibly, previous studies inferred lower com-
pleteness levels than reasonable.

A possible way to reduce MFD inconsistencies
Estimating magnitudes that produce a consistent MFD over a
wide magnitude range appears to be a major challenge, and
are currently a limiting factor to exploit HR catalogs in terms
of magnitude statistics. Hence, magnitude estimation will require

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Demonstrating for two catalogs that the cancellation of
over- and underrepresentation of low magnitudes can lead to an
apparently wider exponential MFD. (a–c) Regional catalog of
southern California for 1992–2018, in which MLilliefors

c is lower
(yellow) than in the two individual time periods (blue and green,
see legend). (d–f) Catalog of the L’Aquila sequence, in which
MLilliefors

c depends on the time window length of the considered
aftershock sequence.
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a different treatment than what is currently common practice. A
possible remedy is to directly estimate moment magnitudes
(Mw) for every earthquake. The estimation of Mw is well devel-
oped, robust with small uncertainty, and in principle consistent
over the entire magnitude range (Deichmann, 2018). It has,
therefore, been established as the standard magnitude scale, such
as by the International Seismological Center (Di Giacomo et al.,
2015). Mw has the further benefit that it is directly related to
earthquake source physics (e.g., seismic moment) and is there-
fore seismologically and physically well defined. Several studies
have demonstrated for natural microearthquakes that a direct
estimation ofMw (i.e., without magnitude regressions) is feasible
for event sizes approaching Mw 0.0 (Atkinson et al., 2014; Ross
et al., 2016; Moratto et al., 2017; Staudenmaier et al., 2018;
Uchide and Imanishi, 2018; Butcher et al., 2020). However, also
the estimation of Mw and source parameters might practically
not be free of biases and limitations, for example, due to
near-surface amplifications at low frequencies especially for
small events (Abercrombie and Leary, 1993).

Conclusions
Our study highlighted that HR catalogs usually do not preserve
the exponential MFD that characterizes ordinary catalogs and
that common methods to estimate the completeness magni-
tude, and consequently the b-value, underestimate severely
the magnitude level below which the MFD departs from an
exponential distribution. Moreover, MFDs of both HR catalogs
based on the seismic network and on advanced detection
methods depart from exponentiality at a similar magnitude
level. These departures are mostly due to an improper mixing
of different magnitude types, spatiotemporal incompleteness,
or recording and processing issues. Another possible explan-
ation is the intrinsic scaling break toward low magnitudes,
such as for ML. Observed inconsistencies make it necessary
to set a considerably higher completeness level than often
anticipated, for instance using Lilliefors’ goodness-of-fit test
with the exponential distribution as we did here.

Our findings have implications for both HR catalog produc-
ers and modelers that use MFDs of such catalogs. Modelers
should be cautious when using HR catalogs that are composed
of different magnitude types, span several orders of magnitude
(especially below ∼M 3), and cover wide spatiotemporal scales.
The different kinds of inconsistencies outlined in our study for
a selection of catalogs are usually not detected by common
methods to estimate Mc, leading to strongly biased b-values
and, as a consequence, to an inappropriate extrapolation of
the rate of large earthquakes from low-magnitude events.
This deficiency calls into question b-value-related studies that
used those catalogs without a proper check of exponentiality.
Moreover, the time dependence of inconsistencies introduces
spurious b-value variations in time.

There is no doubt that the advent of HR catalogs brought
great benefits in many aspects, but the results reported here

may encourage HR catalog producers to evaluate carefully
the homogeneity of the magnitude scales in their catalog (so
that the MFD becomes consistent). Because it is not trivial
to merge different magnitude scales into one consistent
MFD, a possible solution may be to establish the estimation
ofMw for each earthquake as common practice. Such an effort
could reduce the observed and outlined inconsistencies and
make the MFD more physically interpretable.

MFDs conceal inconsistencies more than it seems at first
glance. Although they can be revealed and accounted for with
deliberate methods like the one presented here, it may be more
rewarding to make MFDs themselves more consistent, which
would provide greater opportunities for the statistical analysis
of existing and future catalogs.

Data and Resources
The southern California catalogs were downloaded from these reposi-
tories: Southern California Seismic Network (SCSN) (Southern
California Earthquake Data Center [SCEDC], 2013, last accessed
June 2020), Hauksson et al. (2012) (https://scedc.caltech.edu/
research-tools/alt-2011-dd-hauksson-yang-shearer.html, version
“1981–2019,” last accessed June 2020), U.S. Geological Survey’s
Advanced National Seismic System (USGS-ANSS) ComCat (https://
earthquake.usgs.gov/data/comcat, last accessed June 2020), quake tem-
plate matching (QTM) of Ross, Trugman, et al. (2019) (https://
scedc.caltech.edu/research-tools/QTMcatalog.html, last accessed June
2020), Ross, Idini, et al. (2019) (https://scedc.caltech.edu/research-
tools/QTM-ridgecrest.html, last accessed June 2020), Shelly (2020b)
(data release: Shelly, 2020a), and Lee et al. (2020) (http://bit.ly/
2WswZQk, last accessed June 2020). The catalog of Valoroso et al.
(2013) was provided by L. Chiaraluce (personal comm., November
2019). For the Lilliefors test, we used the implementation of statsmodels
version 0.11.1 (https://www.statsmodels.org, last accessed June 2020;
Seabold and Perktold, 2010). The supplemental material for this article
includes further information and results referred to in the text, such as a
summary of the magnitude–frequency distribution (MFD) inconsisten-
cies for the SCSN catalog, MFD analyses in time windows during the
aftershock sequence of Ridgecrest and Landers (as done for L’Aquila),
andMFD analyses of the template matching (TM)-based Ridgecrest cat-
alogs excluding the evident short-term incompleteness period. Our
method to calculate MLilliefors

c is available as a Python class and demon-
strated for an example catalog at DOI: 10.5281/zenodo.4162497. Data
about Python graphing library are available at www.plotly.com/python
(last accessed October 2020).
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S U M M A R Y
With seismic catalogues becoming progressively larger, extracting information becomes chal-
lenging and calls upon using sophisticated statistical analysis. Data are typically clustered by
machine learning algorithms to find patterns or identify regions of interest that require further
exploration. Here, we investigate two density-based clustering algorithms, DBSCAN and OP-
TICS, for their capability to analyse the spatial distribution of seismicity and their effectiveness
in discovering highly active seismic volumes of arbitrary shapes in large data sets. In particu-
lar, we study the influence of varying input parameters on the cluster solutions. By exploring
the parameter space, we identify a crossover region with optimal solutions in between two
phases with opposite behaviours (i.e. only clustered and only unclustered data points). Using a
synthetic case with various geometric structures, we find that solutions in the crossover region
consistently have the largest clusters and best represent the individual structures. For iden-
tifying strong anisotropic structures, we illustrate the usefulness of data rescaling. Applying
the clustering algorithms to seismic catalogues of recent earthquake sequences (2016 Central
Italy and 2016 Kumamoto) confirms that cluster solutions in the crossover region are the
best candidates to identify 3-D features of tectonic structures that were activated in a seismic
sequence. Finally, we propose a list of recipes that generalizes our analyses to obtain such
solutions for other seismic sequences.

Key words: Machine learning; Statistical methods; Seismicity and tectonics; Statistical seis-
mology.

1 I N T RO D U C T I O N

In recent years, machine learning algorithms have been increas-
ingly used in many different research fields due to the availability
of large data sets and new software tools. Clustering is a type of
unsupervised machine learning (Mehta et al. 2019; Bhattacharya
2021; Zhang et al. 2022) that groups data by means of a sim-
ilarity measure. In the last decades, many clustering algorithms
based on different similarity measures have been proposed (Kauf-
man & Rousseeuw 1990; Jain et al. 1999) and applied to a vari-
ety of scientific problems (Aggarwal & Reddy 2013; Lyra et al.
2014; Lindsey et al. 2018; Karpatne et al. 2019; Abdideh & Ameri
2020) with the aim of identifying hidden patterns in data. Regard-
ing applications to seismicity, a fuzzy clustering algorithm was
used to partition earthquake epicentres of Iranian seismic catalogues
(Ansari et al. 2009), while approaches based on k-means (Ouillon
et al. 2008), Gaussian Mixture models (Ouillon & Sornette 2011)
and more recently agglomerative hierarchical clustering (Kamer
et al. 2020) have been proposed for fault network reconstruction.
Furthermore, Konstantaras et al. (2012), Schoenball & Ellsworth
(2017) and Fan & Xu (2019) have applied the density-based (DB)

algorithm DBSCAN for cluster analyses of earthquake epicentres,
while Cesca et al. (2014), Cesca (2020) and Petersen et al. (2021)
have developed a software tool based on DBSCAN for implement-
ing multidimensional clustering that accounts for other properties
(such as origin, times, focal mechanisms, moment tensors and
waveform similarity).

The choice of the most appropriate clustering algorithm depends
on the application at hand and is related to the definition of a clus-
ter. Clusters are commonly identified either as groups of data that
minimize the intracluster distance (and maximize intercluster dis-
tance) or as dense data regions separated by sparse regions. Here,
we are interested in discovering spatial features of seismicity by
density rather than distances between data points. This decision
is crucial to identify clusters of arbitrary shapes and anisotropic
structures in a 3-D space. Partitioning algorithms like k-means or
Gaussian Mixture models instead minimize the distances between
data points, which generally leads to identify convex (i.e. spherical)
regions around denser groups of data points. Instead, DB connec-
tions among data points allow recognizing preferential alignments
of anisotropic structures and provide information about their size
(Ester et al. 1996). Another advantage of DB algorithms is their
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efficiency on large data sets compared to hierarchical clustering al-
gorithms. Furthermore, DB clustering does not require every data
point to be part of a cluster, which makes it possible to account for
noise in data.

In the following, we will explore the two most popular DB clus-
tering algorithms, DBSCAN (Ester et al. 1996) and its extension
OPTICS (Ankerst et al. 1999). They are based on a simple set of
instructions and require only two input parameters. The problem is
that depending on the spatial distribution of earthquakes, even small
changes of these parameters can lead to very different cluster solu-
tions, ranging from many small to very few large clusters. For this
reason, we explore the challenges in the calibration of these proce-
dures to obtain stable cluster solutions. We deal with this sensitivity
aspect by first exploring the whole parameter space and then dis-
cussing DB cluster solutions for different catalogues. Specifically,
we perform cluster analyses of earthquake catalogues of the 2016
Kumamoto and 2016 Central Italy sequence and identify their main
spatial features. Finally, on the basis of the findings from clustering,
a tentative recipe with instructions to explore a seismic sequence
and identify its main spatial features through DB algorithms is pro-
posed. Then, an application to better characterize the region of the
2016 Kumamoto sequence where the main shocks occurred is il-
lustrated. All the numerical analyses have been performed by using
software packages available in the Statistics and Machine Learning
Toolbox of MATLAB R2021a.

2 D B A L G O R I T H M S

2.1 DBSCAN

DBSCAN stands for Density Based Spatial Clustering of Applica-
tion with Noise and was introduced by Ester et al. (1996) with the
aim to discover clusters of arbitrary shapes in large spatial databases
with noise. The algorithm is based on only two input parameters
(see Fig. 1a): ε, the neighbourhood distance around a given point;
and Z, the minimum number of points in a neighbourhood. Once
the values of ε and Z are assigned, DBSCAN classifies data points,
p, into three categories as follows:

(1)A a core point, if the number of points in its ε-neighbourhood,
Nε(p), is greater than or equal to Z, that is Nε(p) ≥ Z.
(2)As a boundary point, if two conditions are satisfied: (i) the num-
ber of points in its neighbourhood is less than Z, that is Nε(p) < Z,
(ii) p is in the ε-neighbourhood of a core point.
(3)As a noise point, if it is neither a core point nor a boundary point,
that is Nε (p) < Z.

Initially, DBSCAN searches for core points, assigns them a clus-
ter index (hereafter called ‘colour’), and gives the same colour to
all core points that are in the ε-neighbourhood of each other. These
points are called density connected core points (see Fig. 1a) and
their spatial distribution determines the shape and the number of
clusters. Boundary points take the colour of the nearest core point,
while noise points are discarded. We notice that setting the values of
ε and Z is equivalent to introducing a density threshold to influence
which points become clustered. Thus, varying ε and Z corresponds
to increase or decrease this threshold, that means clustering smaller
or larger groups of points. Looking at the distribution of points in
Fig. 1(a), for example, if Z = 3, all points belong to the same cluster
except for one noise point; instead if Z = 5, the algorithm does
not find any cluster because all points are noise points. One of the
most striking features of this algorithm is that the cluster geometry

is not predefined and clusters of any shape can be identified just
grouping paths of density connected points. This is particular use-
ful for cluster analyses of 3-D spatial distribution of earthquakes
as it might be of help in discovering complex networks of fault
systems.

Finally, we note that the number of clusters retrieved by DB-
SCAN does not depend on the order in which the data points
are processed. Instead, boundary points might belong to adjacent
clusters and the algorithm assigns them to the first discovered
cluster.

2.2 OPTICS

OPTICS stands for Ordering Points To Identify Clustering Struc-
ture and is an extension of DBSCAN proposed by Ankerst et al.
(1999). Actually, it is not a clustering algorithm but an ordering
algorithm introduced to overcome the main drawback of DBSCAN,
that is, not being able to distinguish regions with different densities.
The basic idea is that for a given Z, denser clusters may be com-
pletely contained in clusters of lower density. Therefore, if higher
density points are processed first, a clustering order can be obtained,
which contains information about hierarchically nested clustering
structures.

To identify the clustering structure, the algorithm computes for
each point, p, two additional quantities called core distance, dC, and
reachability distance, dR, as follows (see also Fig. 1b):

dC (p; ε, Z ) = { undefined if Nε (p) < Z
ε′ = min (ε) | Nε′ (p) ≥ Z .

dR (p, q; ε, Z ) = { undefined if Nε (p) < Z
max (ε′, dist (p, q)) otherwise.

In other words, for a given Z, dC is the minimum neighbourhood
distance (i.e. minimum ε) to make the point p a core point, whereas
dR between q and p is defined only if p is a core point, in which case
dR equals the maximum of dC and the Euclidean distance between
p and q. It is worth noting that the algorithm does not necessarily
need the parameter ε because the search radius can span all possible
values between zero and infinity, that is exploring all possible values
for dC. Practically, to save computation time, ε is set to a reasonably
large value that serves as the maximum distance to consider.

The algorithm starts similar to DBSCAN with finding core points,
but then explores new points in the order of lowest to highest dC.
The result is a reachability plot that represents dR of each point as a
function of the cluster-ordered list of points and provides informa-
tion about the clustering structure. An example reachability plot is
shown in Fig. 2 for a data set with 300 data points and five clusters.
Such a graph can be considered as a special type of dendrogram
(Sander et al. 2003), since the obtained clustering structure is hier-
archical and indicates the existence of nested clusters. In Fig. 2(b),
the points belonging to clusters have very low dR (<1.5), and cor-
respond to apparent ‘valleys’; the smaller dR, the denser are the
corresponding clusters. The peaks represent points with larger dR

and separate individual clusters. The higher are the peaks, the more
separated are the clusters. Clusters can be extracted from the reach-
ability plot by selecting a threshold value of ε, that is drawing a
horizontal line in Fig. 2(b). The number of valleys below such a
threshold results in the exact same cluster solution as DBSCAN for
the same ε and Z.
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3-D density-based clustering of seismic sequences 2075

Figure 1. Graphical representation of (a) DBSCAN classification of data points basic concept and (b) OPTICS definitions of core and reachability distances.

Figure 2. Example data set (a) and the corresponding reachability plot for Z = 6 (b).

Figure 3. Spatial distribution of the synthetic data set consisting of five manually defined structures. The structures (coloured dots) and background activity
in the whole volume (grey dots) are represented by uniformly distributed random points of varying density, totalling 3280 points.

3 A P P L I C AT I O N T O A S Y N T H E T I C
DATA S E T

To illustrate how DB algorithms operate, we apply them to a syn-
thetic data set of hypocentres. This analysis has multiple purposes
summarized as follows:

(i) Illustrating how DB clustering works in principle by using an
example with simple structures of known geometry.

(ii) Visualizing cluster solutions as function of the parameters.

(iii) Demonstrating that rescaling the data can help to recog-
nize the largest structural features in presence of highly anisotropic
structures.

3.1 Data set presentation

Fig. 3 shows the synthetic data set consisting of five manually de-
fined large structures represented by uniformly distributed random
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2076 E. Piegari et al.

Figure 4. Exploring the influence of input parameters on DBSCAN solutions: (a) Number of points belonging to the biggest cluster, Cb, as a function of ε for
Z = 1; (b) Number of clusters, Nc, as function of input parameters ε and Z; (c) DBSCAN solution for ε = 1.4 km and Z = 15; (d) DBSCAN solution for ε =
3.4 km and Z = 15. Dark blue points in (c) and (d) represent noise points and do not belong to any cluster.

points of varying density (2480 points in total). In addition, a uni-
form noise consisting of 800 uniformly distributed random points
(about 25 per cent of the total points) was added to the whole volume
(40 km × 100 km × 7 km) to represent background activity.

In particular, the synthetic geometric structures are polygonal re-
gions representing (i) two planar structures at ∼6 km depth (black
and green in Fig. 3, slightly shifted in depth), which extend up to
40 km and 60 km horizontally, respectively and about 1 km verti-
cally; (ii) a shallow planar structure occupying a volume of about
10 × 30 × 1 km3 (cyan in Fig. 3); (iii) an inclined surface extending
for about 2 km in depth and connecting two other structures (dark
blue in Fig. 3) and (iv) a square prism-shaped volume of about 2 km
height (red in Fig. 3). Choosing these structures has been motivated
by the following reasons: (i) shallow and deep planar structures
with different orientations mimic horizontal planes associated with
thrust shear zones; (ii) intersections between structures mimic inter-
secting faults; (iii) strong anisotropy mimics larger sequences that
propagate along a fault system and (iv) various orientations and
overall 3-D interconnectedness mimics a fractured volume without
preferential fault planes.

3.2 Cluster solutions in the parameter space

DBSCAN provides a wide range of solutions with clusters differ-
ing in number, shape and size depending on the value of ε and Z.

For Z = 1, all points become clustered (i.e. belong to one or more
clusters). Hints about the number of the largest structures can be
derived from the number of stepwise increases of the biggest cluster
size, Cb, as a function of ε. The behaviour of Cb(ε, Z = 1) for the
synthetic data set is shown in Fig. 4(a). Cb(ε, Z = 1) grows step-wise
every time a clustered region joins the biggest cluster. By increas-
ing ε, the density threshold, Z/ε, for identifying core and boundary
points decreases, leading to the clustering of larger regions with
lower density. Small jumps in Cb indicate that small and dense re-
gions are incorporated into the biggest cluster. Bigger jumps in Cb

instead indicate the presence of large and dense regions that are
spatially distant, as the clusters they belong to must increase in size
before joining the biggest cluster. This is more easily understood
for a data set with two dense regions that are separated by a large
gap. By increasing ε, two big clusters in each of the two regions
will form and continue to increase in size (simultaneously and inde-
pendently of each other) until they merge. At this point, the larger
the spatial distance between the two dense regions, the larger the
corresponding stepwise increase in Cb will be (because the ε range
in which both clusters grow separately increases with the separation
gap). Therefore, jumps in Cb are controlled by the size and spatial
distance of dense regions.

For small Z (< 5), the number of clusters, Nc, typically becomes
very large and then gradually decreases to 1 for increasing ε (see
Fig. 4b). For larger Z, Nc(ε) becomes more complex including minor
fluctuations before reaching 1 for large ε.
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3-D density-based clustering of seismic sequences 2077

Figure 5. Influence of data scaling on DBSCAN solutions of two synthetic data sets for Z = 15. The two data sets differ only in the number of random points
representing the inclined surface intersecting horizontal structures. (a) ε = 2.6 km; (b) ε = 0.45 km; (c) ε = 2.8 km and (d) ε = 0.43 km.

If ε is small, Z/ε becomes large, causing only regions with locally
high densities to become clustered; most points are classified as
noise. If ε is large, Z/ε becomes small, causing an inclusion of less
dense regions into the clustering and most points to end up in the
biggest cluster. Examples for these two extreme cluster solutions
are shown in Figs 4(c) and (d), respectively: Fig. 4(c) illustrates
that the region with the highest density becomes clustered, whereas
Fig. 4(d) illustrates a separation of the large horizontal structures at
depth, which resembles a characteristic feature of the synthetic data
set.

Examples of cluster solutions for intermediate values of the
threshold density Z/ε are reported in Fig. 5. In particular, Fig. 5(a)
shows that DBSCAN produces two large clusters that do not sep-
arate shallow and deep structures. This limitation is related to the
isotropic neighbour searching, that is processing points by using
spheres of radius ε, for which even a small increase in ε leads to
incorporate structures into the clusters that are outside the planar
structures or linked to them. This can be more easily understood
by focusing on the structures that form the big cyan cluster of
Fig. 5(a). In presence of intersecting structures, like a planar struc-
ture and an inclined surface, DBSCAN is not able to distinguish
them as individual structures even though the point density in the
planar structure is high enough and the value of the neighbourhood
search radius ε does not exceed its thickness. This indiscernibility
happens for two main reasons: (i) decreasing ε while Z is kept fixed
leads to a considerable increase of noise points (see Fig. 4c) and (ii)

DBSCAN gives the same colour to paths of density connected points
of any shape, therefore making intersecting structures inseparable
unless they are characterized by different densities.

In an attempt to overcome this limitation, we scaled the data by
homogenizing horizontal and depth ranges before clustering, using
the latter as a reference (here: 0–7 km). To translate each coordinate
individually to a common range, we used the min–max scaling for
each horizontal coordinate x :

xnew = (maxnew − minnew)

(maxold − minold )
(xold − minold ) + minnew, (1)

with minnew = 0 km and maxnew = 7 km. For intermediate values
of the threshold density Z/ε, Fig. 5(b) shows a cluster solution after
applying this scaling, performing the clustering with DBSCAN
and mapping the results back to the original space. In this case,
clustering is more effective in resolving the shallow planar structure
(yellow points) and one of the two horizontal structures (brown
points). However, the shallow planar structure together with the
inclined structure and a large part of a deep horizontal structure
still belong to the same cluster (cyan cluster). The scaling-based
cluster analysis fails in this part because the point density within
the inclined structure is very high. To demonstrate the influence of
this high density, we repeat the analysis for a subset of the synthetic
data set in which the inclined structure has only 25 per cent of the
points, that is a four times lower density (see Figs 5c and d).

Accordingly, clustering without data scaling is again not able
to discriminate shallow and deep structures, whereas they can be
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2078 E. Piegari et al.

Figure 6. Reachability plots of the OPTICS algorithm for the synthetic data set in (a) and (c), and corresponding DBSCAN solutions for ε = 2.5 km in (b)
and (d), respectively. Figures in the top row relate to Z = 15 and those in the bottom row to Z = 30. Dark blue points are noise points.

identified when data are scaled beforehand, even if the inclined
structure is still not well defined. It is worth noting that the min–
max scaling has some caveats. For instance, it may amplify the
effect of local depth uncertainties and does not preserve the abso-
lute distances among event pairs when the spatial boundary of the
catalogue changes (but here we do not consider temporal changes
of the catalogue). We suggest the min–max scaling only in the pres-
ence of strong anisotropies, that is when the horizontal extension
of large dense regions is much larger than the vertical extension,
Lx,y/Lz >>1. Figs 5(b) and (d) show that the scaling-based cluster
analysis fails in identifying intersecting structures as distinct ob-
jects if their contrast in point density values is not high enough.
However, we think that such a scaling is useful to identifying planar
structures that could be at least partially hidden by the uniform point
distributions in depth caused for instance by uncertainties.

For two different choices of parameter Z (15 and 30), Fig. 6
shows reachability plots (left-hand column) and the corresponding
DBSCAN solutions for ε = 2.5 km (right-hand column). The com-
parison reveals that a small Z produces more small-scale valleys in
the reachability plot than a larger Z, which reduced their widths. Ac-
cordingly, a smaller Z results in a larger number of clusters because
the ε threshold crosses more valleys horizontally than for larger Z.
Although it is theoretically possible to get information about the
number of characteristic structures by simply counting the number
of the crossed valleys, practically this is not an easy task if Z is too

small, because the meaning of a valley may be ambiguous. Both
reachability plots reveal two main valleys, which can be considered
as the main features of the data set. Such valleys do not correspond
to any of the five manually defined structures but contain them. In
particular, the relative locations of the main valleys suggest a spatial
separation that divides the investigated volume into two parts, which
are illuminated in Fig. 5(d) by cyan and green dots, respectively. The
fact that the ε threshold cannot cross all the nested clusters (‘sub-
valleys’) inside the biggest clusters (main valleys) indicates that
isotropic neighbour searching is not effective for our synthetic data
set and that scaling improves its characterization in DB clustering.

4 . R E P R E S E N T I N G D B C LU S T E R
S O LU T I O N S I N A P H A S E D I A G R A M

DB algorithms provide cluster solutions that can vary greatly in
size and shape depending on the values of ε and Z. So, the question
is how to choose these parameter values. A common strategy for
estimating an appropriate ε is to detect the ‘knee’ in a k-distance
graph, which plots the distances of each point to its kth nearest point
in sorted order (see Ester et al. 1996). However, this approach does
not always return an optimal ε, especially when a certain number
of large clusters is desired instead of a single big one. As noted by
Cesca (2020), a general rule to determine the best value of ε and
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3-D density-based clustering of seismic sequences 2079

Figure 7. Phase diagram of DBSCAN solutions for the synthetic data set. The dotted–dashed and the red dashed lines divide the parameter space into five
regions with different types of cluster solutions (see annotations and main text). Cluster solutions corresponding to the five points in the diagram for Z = 10
(marked by asterisks) are reported in separate subplots. In each subplot, dark blue points are noise points.

Z cannot be provided because DB algorithms are used for different
purposes.

To get a better understanding of what types of information can
be retrieved from DB clustering algorithms by varying the input
parameters, we explore the whole space of solutions for synthetic
and real seismic catalogues. The numerical analysis has shown that
the phase diagram in the parameter space can be divided into five
areas, which represent different classes of cluster solutions. As an
example, Fig. 7 shows the phase diagram of the analysed synthetic
data set. At the opposite ends of ε axis in the phase diagram, we find
two extreme conditions: for very low ε all data points become noise
points, whereas for very high ε all data points become connected to
a single cluster. Moving horizontally from right to left in the phase
diagram (i.e. decreasing ε and increasing the density threshold Z/ε),
the size of the biggest cluster, Cb, decreases and other clusters ap-
pear. The locations of the jumps in Cb occur every time it splits
into two or more clusters. Based on this behaviour, we obtain a first
critical ε value when Cb contains 60 per cent of all points, that is for
larger ε, cluster solutions are characterized by a big cluster that con-
tains more than 60 per cent of the data. Similarly, by moving from
left to right in the phase diagram (i.e. increasing ε and decreasing
the density threshold Z/ε), we obtain another critical ε value when
60 per cent of the data are noise points, that is for lower ε, cluster
solutions are characterized by more than 60 per cent of noise points.
For the synthetic data set presented in the previous section, exam-
ples of cluster solutions for which Noise > 60 per cent and Cb > 60
per cent are shown in Figs 4(c) and (d), respectively, for Z = 15. The
two critical ε are determined for various Z to construct the phase di-
agram (red markers in Fig. 7). The area between them is a transition

zone named ‘crossover region’, which represents cluster solutions
with many large clusters. Cluster solutions in Fig. 5 all belong to the
crossover region. We are most interested in cluster solutions belong-
ing to this region since they maximize the number of large clusters
and help us to identify volumes with the highest density (natural
clustering). Note that by using other jumps in Cb (i.e. other splits of
the biggest cluster), it is possible to reconstruct a cluster hierarchy
and divide the crossover region into subregions that differ in the
number of large, stable clusters—depending on the event density
distribution.

For the special case Z = 1, there are no noise points, but it is
still possible to define two critical ε values, above which the biggest
cluster contains more than 60 per cent of the data (red star) and all
data (blue star), respectively.

Generally, decreasing ε for a fixed Z leads to more clusters,
while increasing Z for a fixed ε leads to a fewer clusters. However,
the number of clusters as a function of ε and Z does not behave
monotonic (see Fig. 4b).

It is worth noting that increasing the height of the horizontal ε

threshold in the OPTICS’ reachability plot is equivalent to moving
from left to right in the phase diagram. Obtaining cluster solu-
tions in combination with the reachability plot has the advantage of
accounting for the nested clustering structure—because the reacha-
bility plot visualizes, for a fixed Z, all cluster solutions of DBSCAN
for a broad range of ε values.

The phase diagram also shows that cluster solutions de-
pend slightly on Z; an increase of Z generally leads to an in-
crease of noise points and to clusters that are more convex
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2080 E. Piegari et al.

Figure 8. Overview of the 2016 Kumamoto sequence using catalogue extracts between 1 April 2016 and 31 August 2016. (a) Map view; (b) zoom into the area
where the three largest earthquakes occurred [see red frame in ‘(a)’]; (c) 3-D representation of (a); (d) 3-D representation of (b). The three largest earthquakes
are represented with red markers and annotated with their magnitude and day of occurrence.

in shape. Recall that a larger Z produces less small-scale val-
leys in the reachability plot. Thus, even if the reachability plot
helps in identifying the number of large clusters in the data set,
the choice of Z still affects the characterization of the cluster
hierarchy.

Finally, we want to point out that the areas covered by the five
regions in the phase diagram of Fig. 7 depend on the spatial distri-
bution of the data, which is an intrinsic property of a data set. Thus,
changing the data distribution will change the width of the crossover
region. Furthermore, exploring the whole parameter space is com-
putationally expensive and practically unnecessary. Our analysis
shows that only solutions in the crossover region are representative
to extract meaningful information about the characteristic largest
structures of a data set. In Section 6.1, we suggest a procedure for
finding them, and selecting those with the desired level of nesting
structure by using OPTICS.

5 A P P L I C AT I O N T O R E A L
E A RT H Q UA K E C ATA L O G U E S

5.1 The 2016 Kumamoto earthquake sequence

We performed DB cluster analysis of events that occurred between
1 April 2016 and 31 August 2016 (4 months) in the Kumamoto area,
southwest of Japan. The earthquake catalogue was obtained from
the Seismological Bulletin of Japan as provided by the Japan Me-
teorological Agency (JMA) and contains 163 988 events. We only
use events with M > 1 and hypocentral depths shallower than 20 km
within the spatial range of UTM coordinates from 621 to 745 km
Easting and from 3564 to 3699 km Northing (WGS coordinates:
130.3–131.6◦E, 32.2–33.4◦N), totaling 20 887 events. Fig. 8 shows
2-D and 3-D representations of the hypocentral locations with the
three largest earthquakes highlighted with a red marker (M6.5, M6.4
and M7.3).
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3-D density-based clustering of seismic sequences 2081

Figure 9. DBSCAN solutions of the 2016 Kumamoto sequence for Z = 30 and varying ε: (a) ε = 1 km, (b) ε = 1.5 km and (c) ε = 2 km. Red markers
represent the location of the three largest earthquakes. Dark blue points represent noise points.

From Figs 8(a) and (c), we visually recognize a few big clusters
as denser areas that are separated by areas with sparse seismicity.
However, a zoom into the region where the largest earthquakes
occurred (Figs 8b and d) blurs the sharp borders of the denser areas
and reveals finer details, making a visual recognition of clusters
ambiguous. With DB clustering, instead, we can divide the catalogue
into natural groups in an exploratory way and identify patterns
within it.

Fig. 9 shows three DBSCAN solutions for different choices of
the input parameters inside the crossover region, that is for which
both the number of noise points and Cb are less than 60 per cent of
the data. These choices for ε = 1, 1.5 and 2 km divide the seismic
sequence into 34, 11 and 7 clusters, respectively. With an increasing
ε, the number of clusters and the number of noise points decrease,
whereas the largest clusters increase in size by incorporating more
adjacent hypocentres. Even though the shapes of the clusters change
by varying ε, the centres of the largest clusters remain the same;
the clusters always represent the most active zones and the largest

earthquakes always belong to the same cluster (coluored orange,
purple and light blue in Figs 9a–c, respectively).

Fig. 10 shows three reachability plots for Z = {15, 30, 70}
and the DBSCAN solution for Z = 30 and ε = 3 km, which is
characterized by the presence of three largest clusters. These three
clusters are evident in each of the three reachability plots as the
deepest and best-defined valleys, named C1, C2 and C3, which can
be considered as the main features of the sequence. As indicated
in Figs 10(b) and (c), this cluster solution can be obtained for a
wide range of ε, that is many horizontal lines lead to a division into
three big clusters. However, for a small Z (Fig. 10a), the number
of clusters increases significantly as revealed by the many narrow
valleys inside the largest valleys. Consequently, a small variation
of ε can lead to new clusters that include very little data due to the
narrowness of the valleys.

The height of the peaks in the reachability plots represents an-
other feature of the seismic sequence, namely the spatial separation
of the clusters. In particular, the highest peaks correspond to the
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2082 E. Piegari et al.

Figure 10. Cluster analysis of the 2016 Kumamoto sequence. (a–c) Reachability plots for different Z: (a) Z = 15, (b) Z = 30 and (c) Z = 70. Panel (d) shows
a map view of the DBSCAN solution for Z = 30 and ε = 3 km. Red markers represent the location of the three largest earthquakes and dark blue points the
noise points.

Figure 11. Overview of the 2016 Central Italy sequence between 15 August 2016 and 15 August 2017. Map view (top panel) and 3-D view (bottom panel).
The four largest earthquakes are highlighted with a red marker and annotated with their magnitude and day of occurrence in the top panel.
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3-D density-based clustering of seismic sequences 2083

Figure 12. Cluster analysis of the 2016 Central Italy sequence by applying the DBSCAN algorithm for a fixed Z = 100. (a) and (b) Cluster solutions for ε =
0.4 km (a) and ε = 0.5 km (b). Red markers represent the location of the four largest earthquakes. Dark blue points represent noise points. (c) Reachability
plot with the black horizontal line corresponding to the ε threshold shown in (b). The annotated cluster names in (c) correspond to the ones in (b).

points with the largest dR, which indicate the most separated clus-
ters (see Section 2.2). The difference in height of the three main
peaks in Figs 10(a)–(c) indicates that C1 and C2 are less spatially
separated with respect to C3. In addition, Fig. 10(b) (ε = 1.5 km and
Z = 30) lets us identify two well-defined nested structures related
to the smaller valleys inside both C2 and C3 (named c1, c2, c3 and
c4), which are visible as light blue and green coloured clusters in
Fig. 9(b). Note that C4, which corresponds to a small event group in
the northwestern sector of the area (see Fig. 10d), is not easily rec-
ognizable in the reachability plots due to its very deep and narrow
valley on the left-hand side.

Finally, the horizontal ε = 1.5 km thresholds in the reachability
plots produce a different number of clusters for different Z: 14 for
Z = 15 (Fig. 10a), 11 for Z = 30 (Fig. 10b) and 12 for Z = 70
(Fig. 10c).

5.2 The 2016 Central Italy seismic sequence

For the 2016 Central Italy sequence, we used the high-resolution
earthquake catalogue of Tan et al. 2021 spanning from 2016-08-
15 to 2017-08-15. We only considered events with Mw > 2 and
hypocentral depths shallower than 12 km within the spatial range
of UTM coordinates from 330 to 370 km Easting and from 4690 to
4790 km Northing (12.9◦–13.4◦E, 42.3◦–43.2◦N), totalling 18 595

events (see Fig. 11). The locations of the four largest earthquakes are
indicated with a red marker (Mw6.1 Amatrice event on 24 August
2016, Mw5.7 Visso event on 26 October 2016, Mw6.1 Norcia event
on 30 October 2016 and Mw5.3 Campotosto event on 18 January
2017).

Since the data set is characterized by horizontally extended struc-
tures within a limited vertical range, the cluster analysis was applied
after scaling the horizontal coordinates to the depth range (0–12 km)
as discussed in Section 3. After remapping into the original coordi-
nate system, Fig. 12 visualizes the obtained clusters for two different
ε, but a fixed Z = 100. The first parameter set (ε = 0.4 km, Z = 100,
see Fig. 12a) represents a cluster solution whose proportion of noise
points is larger than 60 per cent, that is left of the crossover region.
As expected, many small clusters are returned (13 clusters, maxi-
mally about 1000 events each). Instead, the second parameter set (ε
= 0.5 km, Z = 100, see Fig. 12b) is located inside the crossover
region and produces a balance between the amount of noise points
and density-connected points, maximizing the number of large
clusters.

Fig. 12(c) shows the reachability plot for the same Z = 100 and
reveals several well-defined valleys corresponding to many high-
density zones. The threshold ε = 0.5 km (black horizontal line in
Fig. 12c) crosses nine valleys, which correspond to the DBSCAN
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2084 E. Piegari et al.

Figure 13. Hypocentre density of the (a) synthetic data set, (b) 2016 Kumamoto sequence and (c) 2016 Central Italy sequence. The hypocentre density (see
colour bar) is represented at each event, but for the real cases only if it is larger than 5. Red markers represent the location of the largest earthquakes.

solution shown in Fig. 12(b). The reachability plot provides infor-
mation not only on the presence of nested structures but also on
the size and the number of the largest clusters. The main features
of the catalogue are the three largest earthquake clusters, named
C1, C2 and C5 in Figs 12(b) and (c). C1, which represents the
extended structure at depth in the south, contains four smaller val-
leys. These four valleys were identified as individual clusters for
a smaller ε = 0.4 km and are visible in Fig. 12(a) as clusters of
different colour in this region. C2, which represents the extended
structure at depth in the centre of the sequence and includes the
Norcia main shock, is characterized by two larger and one smaller
valleys—three substructures also visible in Fig. 12(a). C5, which
represents a shallower structure in the north and contains the Visso
event, contains five valleys of which three correspond to structures
identified with ε = 0.4 km in this region (Fig. 12a). The spatial
volumes illuminated by C1, C2 and C5 are also the main features of
this catalogue with a lower magnitude cut-off (Mw > 1.5, totalling
76 055 events), which have been statistically analysed to character-
ize the behaviour of the magnitude distribution during and within
this complex sequence (Herrmann et al. 2021). The remaining clus-
ters in Fig. 12(b) either did not change significantly between the two
parameter sets (e.g. C4, C6 and C8), or were added for the higher ε

(e.g. C7).

6 A G E N E R A L I Z E D A P P ROA C H T O D B
C LU S T E R A NA LY S I S A N D A F U RT H E R
A P P L I C AT I O N

DB clustering algorithms undoubtedly facilitate the analysis of large
catalogues by only using two input parameters. Yet, these two param-
eters can lead to a variety of cluster solutions, making their choice
difficult. Ultimately, the preferred clustering solution depends on
the purpose (i.e. the desired grouping of the data set), because a
single best clustering solution does not exist. The cluster hierarchy
of the catalogue can serve as key information for choosing the pre-
ferred solution and can be retrieved from the reachability plot of the
OPTICS algorithm. Our analyses showed that parameter Z is cru-
cial when the interest is in finding not only regions with the highest
hypocentre density but also large clusters that represent the main
structures. We have shown that parameter sets lying in the crossover
region of the phase diagram are good candidates for exploring the
catalogue in a meaningful way. However, finding all cluster solu-
tions in the crossover region by exploring the entire parameter space
is impractical (and needless) especially for large catalogues. Based
on our findings and some general considerations, we describe below
a recipe for finding a representative cluster solution in the crossover
region.
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3-D density-based clustering of seismic sequences 2085

Figure 14. Flow diagram of our proposed DB cluster analysis of a seismic sequence.

6.1 A tentative recipe for finding cluster solutions in the
crossover region

Because DB algorithms identify clusters as dense regions separated
by sparse regions, their main drawback relates to the identification
of cluster boundaries, that is if density drops are absent, cluster
boundaries are not well defined. Therefore, we suggest their use
with a foregoing inspection of the spatial distribution of earthquake
hypocentres, which add information about their density and can help
in the cluster analysis. Fig. 13 illustrates this for the investigated
catalogues. The colour scale represents the hypocentre density de-
fined as the number of earthquakes, NEQ, in a sphere of radius 1 km,
Vs. The number of events displayed in Figs 13(b) and (c) differs
from Figs 8 and 11 because we have only visualized hypocentres
for which the corresponding density is above a threshold of five
events per Vs. This threshold simply avoids that many irrelevant
events (in low-density areas) prevent the view of areas of interest
(those that have high density). Fig. 13 highlights that density infor-
mation is fundamental not only to locate the most active regions,
but also to quantify the intensity of seismicity. In particular, the
maximum value of the density, Zmax, is approximately equal to 5,
30 and 45 for the synthetic data set and our extracted catalogues
of the 2016 Kumamoto and Central Italy sequences, respectively.
Interestingly, the most active regions in both investigated real cases
do not include the largest earthquakes. We can use Zmax to find solu-
tions in the crossover region. In Fig. 14, we propose a diagram that
shows the main steps to obtain such solutions without performing
an extensive exploration of the phase diagram.

Given an earthquake catalogue for a region of interest, the first
step consists in converting the map units into km units (e.g. UTM
coordinates), because an orthogonal coordinate system is required to
correctly measure Euclidean distances between hypocentres. Then,
the density of hypocentres needs to be computed and visualized

for every event to infer the spatial distribution of hypocentres and
obtain the Zmax and the geometry of dense regions. The cluster
analysis starts with ε = 1 km and Z = Zmax. If strong anisotropic
structures characterize the data set, data scaling is suggested and
to start cluster analysis with ε = 0.5 km and Z = 2Zmax. We note
that the evaluation of anisotropic structures is done retrospectively
considering the spatial distribution of the whole seismic sequence
and when the depth range of hypocentres significantly differs from
their horizontal range. Such an evaluation becomes more feasible
when the catalogue increases in size, and cannot be done at the
beginning of a sequence.

These initial choices for ε and Z were motivated by investigat-
ing several catalogues (also catalogues not discussed here), because
they proved effective in providing solutions in the crossover region
or its proximity. Regarding the earthquake density definition, chang-
ing the sphere size Vs does not change the spatial distribution of
points in Fig. 13, but only their colour. Generally, for an increasing
sphere radius, the earthquake density decreases because the volume
increases faster than NEQ. Thus, if density values decrease, also
Zmax decreases. Consequently, small values of Z in the initial con-
figuration require small values of ε to find solutions in the crossover
region, which however are associated with the undesired feature of a
big amount of noise points. In addition, uncertainties of hypocentral
depths are typically of the order of 1 km, so that smaller values of
Vs might not be useful. Regarding the initial choice for ε, we set the
radius of the spherical neighbourhood to 1 km because earthquakes
usually occur at a depth of about 0–15 km. If ε is larger than 1 km,
DBSCAN likely returns solutions with vertical extensions of the
clusters spanning the entire depth range (see Fig. 9), not allowing to
distinguish shallow and deep structures. Note that larger ε require
larger Z to avoid solutions with only one or two huge clusters but
instead remain in the crossover region. Besides, larger ε and Z result
in more convex cluster shapes.
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Figure 15. Performing cluster analysis for the largest cluster of the 2016 Kumamoto sequence shown in Fig. 9(b), totalling 9414 events. (a) Map view and
(b) 3-D view. (c) Map view and (d) 3-D view using data in the depth range 10–15 km, totalling 4742 events. Events occurring between the two largest events
(M6.5 and M7.3) are shown in red, the rest in blue (16 April 2016 to 31 August 2016). Black markers represent the three largest events of the sequence. (e–g)
Cluster analysis for Z = 25 applied to the depth-constrained subset shown in panels (c) and (d). The map view and 3-D view in panels (e) and (f) relate to a
DBSCAN solution using ε = 1 km, which is indicated by a horizontal line in the reachability plot in panel (g). Noise points are not shown.
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Iteratively, the test condition of the cluster solution belonging to
the crossover region is checked by computing the number of noise
points and the size of the biggest cluster Cb. If this condition is not
satisfied, comparing Cb to the size of the other clusters defines how
to change the Z value: if Cb is much larger than the sum of sizes
of other clusters, it must be decreased, otherwise decreased. Once a
solution in the crossover region has been obtained, the reachability
plot is computed for this Z with the OPTICS algorithm. Given
this visualization of the nested hierarchical structure, the ε value
is determined by the desired hierarchy level. This ε completes the
parameter set for DBSCAN to obtain the final cluster solution.

6.2 Application to a real case

The proposed recipe (Fig. 14) is applied to the largest cluster of the
Kumamoto sequence obtained from the cluster solution shown in
Fig. 9(b). Since this group of earthquakes contains the three largest
earthquakes of the sequence, we want to investigate if they may
belong to different partitions. Fig. 15 emphasizes two periods of
the data set: between the two largest events, a M6.5 and a M7.3
(14 and 15 April 2016, show in red) and everything after (16 April
to 31 August 2016, show in blue). The earlier events represent a
well-known, preferred alignment (Yano & Matsubara 2017), which
also persists in the depth range of 10–15 km (Figs 15c and d), and
are characterized by a spatial distribution that resembles a branched
structure. The two largest events initiated at similar depths and
belong to two different branches. From our cluster analysis, we
find that both events belong to the same cluster. By applying our
proposed procedure only using hypocentres in the depth range of
10–15 km, we again find that the two largest events belong to the
same cluster (see Figs 15e and f), supporting the findings of previous
studies (Sugito et al. 2016; Yue et al. 2017). The reachability plot
nicely reflects the hierarchy of the data set and its characteristic
structures (see Fig. 15g). In particular, a horizontal cut at ε = 1 km
crosses seven valleys corresponding to the seven clusters shown in
Figs 15(e) and (f) as retrieved by DBSCAN. From the reachability
plot, we can infer the density and size of each cluster and already
presume what happens when we change the ε threshold: a small
increase in ε will cause C2 and C3 to be included in C1, whereas a
decrease in ε leads to a splitting of C1 into smaller clusters due to
several smaller valleys contained in it.

7 C O N C LU S I O N S

We performed 3-D spatial cluster analyses of seismic sequences
by applying the popular density-based clustering algorithms DB-
SCAN in combination with the reachability plot of the OPTICS
algorithm to synthetic and real hypocentre catalogues. Our analyses
address the influence of the input parameters on cluster solutions
and provide suggestions for exploring earthquake catalogues more
appropriately.

Several studies that applied DBSCAN to earthquake catalogues
using hypocentre locations, occurrence times, and/or focal mecha-
nisms all remain vague about the choice of input parameters. Here
we showed that such choices are crucial to discover regions of in-
terest for a subsequent analysis and to identify meaningful tectonic
structures that were activated in a seismic sequence.

We showed that varying the DBSCAN parameters leads to a va-
riety of cluster solutions that can be classified into five different
regions of the phase diagram. Cluster solutions inside the so-called

crossover region are the most representative candidates for char-
acterizing 3-D spatial features of seismic sequences, because they
represent the individual structures as large clusters. To identify these
solutions, we proposed a tentative recipe that includes a density rep-
resentation of earthquakes and investigating the nested clustering
structure.

We draw the following conclusions from our analyses: (i) using
DB algorithms for cluster analysis requires utmost care in the se-
lection of input parameters and the type to which the considered
solution belongs to; (ii) graphically representing the spatial distri-
bution of hypocentres and their density helps to select the input
parameters and (iii) only cluster solutions in the crossover region
represent information about the largest characteristic structures of
a data set. Investigating such solutions can provide insight into the
main features of a seismic sequence (e.g. its 3-D fault geometry) and
open new perspectives for studying the spatiotemporal evolution of
fault systems.
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An Energy-Dependent Earthquake
Moment–Frequency Distribution

Ilaria Spassiani*1 and Warner Marzocchi2

ABSTRACT
The magnitude–frequency distribution (MFD) of many earthquake catalogs is well
described by the Gutenberg–Richter (GR) law or its tapered version (TGR). This distribution
is usually extrapolated to any subsets of the space–time window covered by the catalog.
However, some empirical observations and logical thoughts may raise doubts about the
validity of this extrapolation. For example, according to the elastic rebound theory, we
may assert that the probability of a strong shock nucleating within a short-time interval
in a small areaA just ruptured by another strong event should be lower than that expected
by GR (or TGR): a lot of energy has already been released, and it takes time to recover to the
previous state. Here, we put forward a space–time modification of the TGR, named energy-
dependent TGR (TGRE) in which the corner seismic moment becomes a time-varying energy
function depending on (1) the conceivable strongest shock that may nucleate in A; (2) the
time elapsed since the last strong earthquake that reset the elastic energy inA to a residual
value; and (3) the rate of the energy recovery, linked to the recurrence time of the fault(s)
involved. Themodel also verifies an invariance condition: for large space–timewindows, the
occurrence of a strong shock does not affect significantly the whole elastic energy available,
that is, the TGRE becomes the TGR. The model is simple and rooted in clearly stated assump-
tions. To evaluate its reliability and applicability, we apply it to the 1992 Landers sequence.
As expected by TGRE, we find that theMFD close to the fault system interested by themain-
shock (Mw 7.3) differs from that of earthquakes off-fault, showing a lower corner magni-
tude. We speculate that TGREmay be profitably used in operational earthquake forecasting
and that it explains the empirical observation that the strongest aftershocks nucleate always
outside the mainshock fault.

KEY POINTS
• The moment–frequency distribution at small scales should

account for residual elastic energy available.

• We propose the energy-dependent tapered Gutenberg–
Richter (TGRE) model for seismicity in the short term.

• Epidemic-type aftershock sequence models with TGRE

can improve short-term operational earthquake forecasting.

INTRODUCTION
The Gutenberg–Richter (GR) law (Gutenberg and Richter,
1944) and its tapered version (TGR; Kagan, 2002a,b) are
the most used magnitude–frequency distributions (MFDs) at
quite different space–time windows, such as in operational
earthquake forecasting (OEF) models (Jordan et al., 2011;
Marzocchi et al., 2017; Omi et al., 2018; Michael et al., 2019).
The validity of the (T)GR rests on the assumption that the
magnitude of an earthquake is independent of the past seismic-
ity for any dimension of the space–time window. Although this
assumption seems appropriate when looking at large spatio-
temporal domains, its validity at small space–time scales

conflicts with some empirical findings in which the largest trig-
gered events occur outside the fault of the strong triggering
earthquake (van der Elst and Shaw, 2015; Stallone and
Marzocchi, 2019).

Conceptually, this empirical observation could be explained
in the framework of the elastic rebound theory (Reid, 1911), in
which one strong earthquake decreases significantly the elastic
energy available in the fault that generates the shock, and it
takes time to recover it. This means that the probability of a
strong shock to nucleate in the same area where another strong
earthquake just occurred within a short-time window has to be
lower than that predicted by the (T)GR law. Conversely, if we
consider a larger spatial scale, the occurrence of a single shock
does not affect significantly the elastic energy available in the
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area, so it is expected that the (T)GR holds. In addition to the
empirical evidence, we notice that the existence of a possible
variability of MFD stems from recent OEF models (Field,
Jordan, et al., 2017; Field, Milner, et al., 2017) based on faults
system that can produce reliable forecasts only when the MFD
is changed in space.

In this article, we put forward a space–time-dependent
model that describes the MFD of earthquakes that nucleate
in small space–time areas, taking into consideration the elastic
energy released by the past seismicity in that area. The use of a
small space–time dimension marks a difference from very
recent studies on a similar argument (Marsan and Tan, 2020)
and from past analyses on the definition of the maximummag-
nitude expected in fixed (long) time windows (Zöller et al.,
2013). The model introduces a time-varying corner seismic
moment in the TGR law that results from the level of elastic
energy that is currently available to be released in the space–
time area of interest. We name the model energy-dependent
TGR (TGRE) to explicitly reflect the dependence of the MFD
on the elastic energy available. In a nutshell, TGRE inhibits the
nucleation of large earthquakes in the area that just experi-
enced a significant release of elastic energy.

An alternative approach to modeling the space–time vari-
ability of the elastic energy available is based on quantifying
space–time variations of the b-value parameter in the GR
law (Gulia and Wiemer, 2019). For instance, a larger b-value
diminishes the probability of large earthquakes, but they still
remain possible (e.g., if we keep fixed the rate of M 4+ earth-
quakes, increasing the b-value from 1.0 to 1.2 diminishes the
M 7+ rate by a factor of about 4). Empirical evidence seems to
show that this chance may be lower because large aftershocks
nucleate almost exclusively in the outer regions of the main-
shock zone (van der Elst and Shaw, 2015). The model that we
put forward in this study is likely more suitable to explain such
empirical evidence.

In the first part of this article, we describe the theoretical
aspects of the model: we explicitly derive its formulation
and that of the time-varying corner seismic moment with
respect to which it is conditioned; we also discuss the stability
conditions in comparison with that of the classical GR model.
In the second part, we analyze the Landers earthquake
sequence, which started on 28 June 1992 with anMw 7.3 event,
with a dual purpose: (1) to find empirical evidence corroborat-
ing the existence of space–time variability of the MFD and
(2) to test if the proposed TGRE model better describes the
data than the space–time-independent TGR model.

THE ENERGY-DEPENDENT MFD MODEL—TGRE
For the sake of mathematical simplicity, the TGRE is built in
terms of seismic moment instead of magnitude; the transition
from one to the other can be easily made by applying the rela-
tionship of Kanamori (1977) m � 2

3 logM − 10:73, in which
M stands for seismic moment (in dyn·cm) and m for the

corresponding moment magnitude. Such a notation will be
adopted in this article hereafter; furthermore, owing to this
unambiguous relationship, we will use the acronym MFD
for the seismic moment–frequency distribution. The MFD
TGR Pareto law introduced by Kagan (2002a,b) reads as fol-
lows:

EQ-TARGET;temp:intralink-;df1;308;666ΦTGR�M� � ΦGR�M� exp
�
Mmin −M

Mc

�
; �1�

in which ΦGR�M� � � M
Mmin

�−βk is the GR distribution, βk � 2
3 b-

value,Mmin is the completeness threshold, andMc is the corner
seismic moment, which is the value such that events with a
higher seismic moment are less likely than what is expected by
the decreasing exponential distribution. The tail of the GR law is
therefore forced to decay stronger in the TGR model, the decay
itself being controlled by the Mc value, which is assumed as a
fixed parameter and is typically estimated through the maxi-
mum-likelihood technique (Kagan and Schoenberg, 2001).

In this article, we introduce the TGRE model for earth-
quakes that nucleate inside an arbitrary portion A of the fault
(the generalization to a volume is straightforward). The TGRE
model relaxes the hypothesis that Mc is a fixed parameter,
allowing it to vary as a function of the amount of energy E
currently available in A, that is, Mc ≡Mc�E; t�, in which t
is the time since the last earthquake that reset the energy in
A to a residual value. This function Mc�E; t� has to consider
the past earthquakes that nucleated in A, as well as the earth-
quakes that involved A in their rupture nucleated somewhere
else (we use the term “participation” hereafter as in Parsons
et al., 2018). In this way, the TGRE model inhibits a second
strong shock to nucleate in a small area that has been involved
in a strong earthquake recently, but it does not prevent this
area from participating in the rupture of another big event that
may nucleate nearby, along the same fault(s) involved. It fol-
lows that the nucleation MFDs in two nearby small areas may
be different from, but still influenced by, the reciprocal seismic-
ity. For the sake of simplicity, hereafter, we will omit specifying
the dependence on t in the notation of Mc�E�.

We also constrain the model to respect a sort of “invariance
condition,” that is, the TGRE turns back to the classical TGR at
large spatiotemporal scales. This is to respect the evidence that,
at large scales, the TGR law is well validated. Of course, the
specific choice of considering a time-varying corner seismic
moment is not the only one possible to introduce an energy
dependence in the MFD, but it is justified in terms of easy prac-
tical use and testing; any other way of including a direct
dependence on the energy can be proposed, provided that the
higher complexity is balanced by better reliability of the model
and that it is consistent with previous pieces of evidence. In the
following sections, we define both the time-varying corner
seismic moment Mc�E� and the explicit distribution of the
TGRE model.
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Time-varying corner seismic moment Mc�E�
Here, we propose a formulation of Mc�E� based on two main
concepts. First, the relevant quantities controlling the earth-
quake nucleation in A are the strongest earthquake that can
eventually nucleate in A and the most recent past earthquake,
which resets the available energy to the residual minimum
value. Specifically, the elastic energy in A is reset to a residual
minimum value by any earthquake that nucleates inside and
generates a fractured area larger than A. At the same time,
the area is reset when it participates in a large earthquake that
nucleates outside but still involvesA. In other words, the reset-
ting event must have a seismic momentM ≥ MA, in whichMA

is the seismic moment of an earthquake with an area equal to
A. The latter’s dimension, therefore, plays a direct role in the
characterization of the relative resetting events. To determine if
an event was involved this area, we check if at least part of A
falls in the circle area with the earthquake epicenter. The rel-
ative diameter (as well as MA) may be computed through any
proper rupture length–moment magnitude relationship, such
as in Wells and Coppersmith (1994), Papazachos et al. (2004),
or Allen and Hayes (2017).

Second, the elastic energy available in A scales with time,
and it is related to Mc. In elasticity theory, E ∝ σ2, in which E
is the elastic energy accumulated as a consequence of the applied
stress σ; because the stress rate due to plate tectonics can be con-
sidered a constant value (i.e., σ ∝ t), it follows that E ∝ t2. The
link between the elastic energy available and seismic moment is
more controversial. Here, we assume that the radiated energy is
a reliable proxy of the elastic energy drop and that the radiated
energy is proportional to the seismic moment, E ∝Mc; the latter
holds only if the static stress drop of earthquakes is independent
of the magnitude. These hypotheses are still matters of intense
debate (Ide and Beroza, 2001; Kanamori and Brodksy, 2004; Oth
et al., 2010), and their validity is model dependent (Kanamori
and Brodksy, 2004). However, we stress that a TGRE may be
built adopting a different form ofMc�E� that takes into account
different hypotheses.

Going into the detail, we define the following parameters:

1. M�
c is the maximum corner seismic moment for earth-

quakes nucleating in A. It is actually the corner seismic
moment Mc adopted in the classical TGR distribution (1).
We propose that M�

c could be related, although not neces-
sarily, to the length of the longest fault included in the area:
for instance, it can be obtained from any proper rupture
length–moment magnitude relationship, such as those pro-
posed in Wells and Coppersmith (1994), Papazachos et al.
(2004), or Allen and Hayes (2017).

2. t0 is the occurrence time of the earthquake that reset the
elastic energy in A, that is, the past earthquake in which
A participated.

3. M�
c;0 sets the minimum value for the corner seismic moment

that is achieved after the occurrence of a resetting earthquake

in A. In general, M�
c;0 � ρM�

c , in which ρ < 1 indicates the
fraction of elastic energy that is available after the resetting
event. The value of ρ, or equivalently of M�

c;0, may be set
either theoretically, for instance, by analyzing the stress rota-
tion (Hardebeck and Okada, 2018), or empirically by analyz-
ing one or more stacked similar earthquake sequences.

4. ν is a parameter connected to the recurrence time of the lon-
gest fault involved in A, and it controls the velocity of con-
vergence to the maximum value M�

c after a resetting event.

In the Setting Parameters and Assumptions section, we
describe some practical choices for these parameters. Still, we
stress again that the choices are not prescriptive for the
TGRE’s application; differentMc�E� parameterizations, assump-
tions, and parameters can be used.

According to the previous concepts and definitions, we
define the time-varying energy function as

EQ-TARGET;temp:intralink-;df2;320;523Mc�E� � M�
c;0 � �M�

c −M�
c;0��ν�t − t0��α; �2�

bounded to the values �t − t0� ≤ 1
ν, which translates to �t − t0� ≤

τ when the coefficient of variation (COV) of the interevent
times between consecutive earthquakes is zero, that is, τ is
the recurrence time between earthquakes. This restriction
guarantees that Mc�E� ∈ �M�

c;0;M
�
c � when �t − t0� ∈ �0; τ�, a

requirement that is deducible from the earlier argument. The
dependence of the corner seismic moment on time is therefore
expressed with respect to the time elapsed since the resetting
event, and the seismic moments multiplication term allows us
to account for the energy reloading process; whereas, M�

c;0 is
added to ensure that the available energy will not fall below
its minimum value, even immediately after the resetting event,
that is, when t − t0 ∼ 0. In this article, according to the propor-
tionality between elastic energy and seismic moment, we set
α � 2 (α � 1 if the seismic moment is assumed to increase
linearly with time).

The temporal trend ofMc�E�, as well as its sensitivity to the
parameters, can be observed in Figure 1, the plots of which are
obtained by considering two parameters among �M�

c ;M�
c;0; ν�

fixed and the third varying; for an easier interpretation, we also
display magnitude values instead of seismic moments. An
overall increasing trend is shown in all of the plots. As intuition
suggests, the time-varying corner seismic moment approaches
its maximum more rapidly when ν becomes larger: the lower
the recurrence time of the fault is, the faster theM�

c is reached.
The increasing velocity of Mc�E� is also faster as M�

c is higher,
whereas it does not change withM�

c;0. This is because the influ-
ence of the latter on the taper’s trend can be appreciated only
within a short-time interval since the resetting event (less than
1 yr in our example), withMc�E� controlled mainly byM�

c and
ν at just larger scales: this is why the x-axes in plot (c) are cut at
1 yr after the reset; otherwise, the difference would not have
been visible. When focusing on the entire time window, we
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observe that the influence of ν and M�
c on Mc�E� is a bit

stronger. However, Figure 2 highlights that, in the short term,
the time-varying corner seismic moment does not substantially
depend on these two values.

To be thorough, we add that Mc�E� could be also inter-
preted as a random variable with a distribution that takes
its cue from the stress level adopted in the stress release model
(Vere-Jones, 1978, 1988; Wang et al., 1991; Zheng and Vere-
Jones, 1991; Xiaogu and Vere-Jones, 1994). In fact, Mc�E�
could consist of a deterministic term of accumulated energy,
linked to the elapsed time since the resetting event, and a sto-
chastic term of energy released by each single past earthquake,
which is distributed according to TGR. Nevertheless, to gain
easy applicability and reliable testing, we assume here that
Mc�E� is a deterministic function of time, as defined in (2).

The mathematical description of the TGRE model
The TGRE model that we propose for earthquake seismic
moments is simply obtained by including the time-varying

corner seismic moment Mc�E� previously derived in the
TGR cumulative distribution (1), that is,

EQ-TARGET;temp:intralink-;df3;308;132ΦTGRE�M� �
�

M
Mmin

�
−βk

exp

�
Mmin −M
Mc�E�

�
; �3�

in which Mc�E� ∈ �M�
c;0;M

�
c � is defined in equation (2) with

α � 2. Figure 3 shows ΦTGRE�M� as a function of Mc�E�.

Figure 1. Time-varying corner seismic momentMc�E� � M�
c;0 � �M�

c − M�
c;0�

�ν�t − t0��2 as a function of the elapsed time t − t0 between the event �t;M�
and the resetting one �t0;M0�. Panels (a–c) are obtained, respectively, for
fixed �M�

c ;M�
c;0�—varying ν, fixed �ν;M�

c;0�—varying M�
c , and fixed

�ν;M�
c �—varying M�

c;0. The latter is obtained for a shorter t − t0 interval
because here the differences of the corner seismic moment function can be
appreciated: Mc�E� would not change substantially over a longer temporal
interval, being M�

c is predominant over M�
c;0. Magnitude values are shown in

place of seismic moments for an easier interpretation of the figure.
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If we consider a large spatial
domain composed of many
faults, the occurrence of one
or a few large earthquakes
may reset the elastic energy
only on a limited portion of
the area. This means that, for
the whole large spatial domain,
Mc�E� ≡M�

c , which acknowl-
edges the spatial invariance
condition. The temporal
invariance condition is instead
satisfied by construction; in
fact, equation (2) gives M�

c

for t − t0 → τ.
One obvious application of

the TGRE model is in OEF
(Jordan et al., 2011). It is
expected to solve the main
conundrum of existing OEF
models (Marzocchi et al., 2017;
Omi et al., 2018; Michael et al.,
2019), for which the probability
of a large aftershock is exactly
where the mainshock occurred.
For example, the epidemic-type
aftershock sequence–TGRE
(ETAS-TGRE) (i.e., ETAS with
TGRE) rate would be:

EQ-TARGET;temp:intralink-;df4;445;367

λ�t; x; y;MjHt� � �λ0�x; y�
�

X
fijti<tg

λtr�t − ti; x − xi; y

− yi;Mi��pTGRE�MjMc�E��;
�4�

in which Ht is the past history
up to time t, that is, the past
earthquakes f�ti; xi; yi;Mi�;
ti < tg; λ0�x; y� is the rate
of the background events;
λtr�t − ti; x − xi; y − yi;Mi� is
the rate of the triggered events;
pTGRE�MjMc�E�� is the TGRE
probability density function for
the seismic moment that is cal-
culated in x; y at time t; and
finally, Mc�E� ≡Mc�E; x; y; s�
is linked to the elastic energy
available in x; y after time s since
the last resetting earthquake. In
this framework, the TGRE may
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Figure 2. Surface plots of the time-varying corner seismic moment Mc�E� � M�
c;0 � �M�

c − M�
c;0��ν�t − t0��2 as a

function of the time elapsed since the reset t − t0 and the parameter ν with fixedM�
c in the first column panels, and

vice versa in the second column. The minimum corner seismic moment is set at m�
c;0 � 4:5 in each panel.
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be applied to both the background and triggered earthquakes as
in the classical ETAS model.

In the ETAS-TGRE setting, it is also interesting to investi-
gate how the shift of the TGRE taper influences the computa-
tion of the branching ratio, which we recall is the average
number of aftershocks triggered by an arbitrary event
(Zhuang et al., 2012). As for the TGR law, the branching ratio
of the TGRE model is derived as

EQ-TARGET;temp:intralink-;df5;41;367ηTGRE � κ� καke
Mmin
Mc�E�

�
Mmin

Mc�E�

�
βk−αk

Γ

�
−βk � αk;

Mmin

Mc�E�

�
;

�5�

in which Γ�s; t� � R
∞
t xs−1e−xdx is the upper incomplete

gamma function (Bateman, 1953; Temme, 1996; Spassiani,
2020) and κ; αk are the parameters of the productivity law
ρ�·� expressed in terms of the seismic moment through the
relationship of Kanamori (1977), that is, ρ�M� � κ� M

Mmin
�αk .

In Figure 4, we show that ηTGRE increases with the time-vary-
ing corner seismic moment Mc�E�, indicating that, if the taper
moves to the left as a consequence of a great amount of energy
just released, the average number of aftershocks triggered by a
generic event is reduced: in fact, an event with a lower seismic
moment will generate a lower number of aftershocks. The plot
shows that the increasing behavior is faster as the difference
βk − αk is lower: in the case of the classical ETAS-GR, it has
to be βk > αk for the process not to explode, but this condition
becomes unnecessary for the ETAS-TGRE model, and so for
ETAS-TGR (Spassiani, 2020). As usual, the stability of the
ETAS-TGRE process is guaranteed by imposing ηTGRE < 1.
Because this branching ratio increases with the corner seismic
moment, we have ηTGR < 1 as a sufficient condition for the

stability of the ETAS-TGRE process; in fact, Mc�E� assumes
its maximum in M�

c . We also stress that, when βk > αk,
ηTGRE < ηGR holds; therefore, in this case, our model’s stability
conditions are less restrictive than those of ETAS-GR.

APPLICATION TO REAL EARTHQUAKES: THE
LANDERS SEQUENCE
In this section, we test the hypothesis of the space and time inde-
pendence of MFD, and then we show how the TGRE model
works in practice. To do that, we consider the Landers earth-
quake sequence, which started with an Mw 7.3 event that
occurred on 28 June 1992, in southern California. The seismic
catalog for such a sequence is rich enough to allow for a sta-
tistically significant data-model comparison. Furthermore, the
fault segment that generated the initial earthquake is well defined
in this case because a detailed mapping of the slip distribution is
available; in our analysis, we focus on the fault segments that cer-
tainly slipped during theMw 7.3 event, as shown in Madden and
Pollard (2012) and hereafter called the “Landers fault.”

Seismic data for the analysis have been taken from the online
available Uniform California Earthquake Rupture Forecast,
version 3 (UCERF3) earthquake catalog, which covers the entire
California region from July 1769 to April 2010 and includes
events with M ≥ 4 before 1894 and M ≥ 2:5 after 1894 (Field
et al., 2013). The data relative to the Landers fault have been
taken from the California Reference Fault Parameter Database–
UCERF2 system, which is easily accessible online (Field et al.,
2009) and does not present substantial differences with respect
to the UCERF3 regarding the faults involved in the Landers rup-
ture. For the websites, see Data and Resources.

In particular, in this application, we test whether the MFDs
inside and outside the rupture that generated the Landers
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Figure 3. Survival function of the energy-dependent Tapered Gutenberg–
Richter (TGRE) model for several values of the available energy (corner
seismic moment), corresponding to the Mc�E� indicated in the legend, in a
log–log scale.
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earthquake come from the same distribution, which would be
expected in the case of space–time independence. Then, we apply
the TGREmodel to the on-rupture earthquakes, and we quantify
the difference in the reliability of the TGR and TGRE models
through the log-likelihood ratio test. The red stripe in
Figures 5a–8a shows the rupture on the Landers fault. The stripe
has a thickness of about 10 km (considering 	5 km around the
latitude of each segment fault point). The analysis is conducted in
the following four time intervals: 29 June–6 July 1992, 29 June–
29 July 1992, 29 June–29 September 1992, and 29 June 1992–29
June 1993, that is, respectively, one week, one month, three
months, and 1 yr since the day after the Mw 7.3 resetting event.

Setting parameters and assumptions
The first step is to define A, which sets the spatial resolution
of the analysis. We consider the case in which A covers the
whole fault rupture of the Mw 7.3 earthquake (red stripe in
Figs. 5a–8a). For this tutorial application, we set the parameters
of the TGRE model as follows:

1. M�
c corresponds to m�

c � 7:59, as proposed in Kagan et al.
(2010) for active continents.

2. After the resetting Landers earthquake, no other resetting
earthquake occurred in A in the time interval considered;
therefore, t0 corresponds to 28 June 1992.

3. M�
c;0 is estimated through a grid search; specifically, we

searched the m�
c;0 in the set [4,4.1,…,6], which maximizes

the likelihood ratio in favor of TGRE in the first week of
data. As shown in Figure 9, we find m�

c;0 � 4:3. Of course,
more sophisticated procedures to estimateM�

c;0 are possible,
but we argue that the results are stable for reasonable var-
iations of this parameter. In particular, the log-likelihood
ratio remains well above zero (TGRE explains the data bet-
ter than TGR) for 4:1 ≤ m�

c;0 ≤ 4:8. Then, in Table 1, we
show also that the M�

c;0 estimated in the first week of data
shows the superiority of TGRE with respect to TGR also for
other time windows (one month, three months, and 1 yr)
(see the Results section for more details).

4. ν � 1
τ�1−2COV�, in which the recurrence time τ � 250 yr is

rescaled to account for the covariance coefficient COV = 0.3.

The results are illustrated in the next section. To check their
stability and the sensitivity of the model, in addition to using
differentM�

c;0, we perform the analysis for other possible values
of the parameters M�

c and τ. The details are reported in
Table 1. We anticipate that the results are not significantly
modified, in agreement with what is shown in Figure 2 as pre-
viously discussed.

Results
The results are illustrated in Figures 5–8 for one week, one
month, three months, and one year since the day after the
resetting Landers event, respectively. The space–time windows

Figure 5. Tapered Gutenberg–Richter (TGR) versus TGRE analysis relative to
the considered area A, covering the Landers segment fault, as shown in
panel (a) (the colored lines with circles represent the nearby segment faults).
The temporal interval here is 29 June–6 July 1992, that is, within one week
of the day after the Landers resetting earthquake. The number of events
contained in this spatiotemporal window is 437 (red dots in panel (a)). Panel
(b) contains the earthquake cumulative number of events inside A (in red),
and outside it (in dark blue). Finally, in panel (c), we compare the fit with the
data of the TGR model in black and the TGRE model in yellow, obtained,
respectively, with m�

c � 7:59 and mc�E� � 4:301 (the latter derived from
equation 2 with α � 2). These corner magnitudes are also used to obtain
1000 simulations of 1000 TGR- and TGRE-distributed seismic moments,
respectively, which are plotted as light-gray and light-yellow cones,
respectively. The data (red step functions) almost completely fall into the
TGRE cone. Magnitude values are shown in place of seismic moments for an
easier interpretation. Kstest2, two-samples Kolmogorov–Smirnov test.
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in which the analysis is performed are shown in the map of
panels (a), in which the on-rupture seismicity of A (red dots)
is reported inside the red stripe.

In Figures 5b–8b, we show the results of the null hypothesis
of having the same MFD inside and outside the ruptured area.
In particular, we plot the earthquake cumulative number of
events inside (in red) and outside (in dark blue) A in different
time windows. In each of the four temporal intervals, red and
dark-blue step functions are clearly different, and the two-sam-
ples Kolmogorov–Smirnov test (Massey, 1951) confirms the
rejection of the null hypothesis that the data are drawn from
the same continuous distribution, at a significance level of 0.01
that was chosen before carrying out the analysis (the p-values
on the figures are always smaller than the significance level).
We stress that these results are completely independent of the
modeling because they are obtained by considering only earth-
quake data. At the same time, these results support the main
motivation of this work, that is, empirical data support the
hypothesis of different MFDs on- and off-rupture just after
a large shock.

Figures 5c–8c show the goodness of fit of the TGRE and
TGR models with respect to the earthquake data inside A.
Specifically, we plot the TGR model in black versus the TGRE
one in yellow, orange, green, and blue for one week (Fig. 5),
one month (Fig. 6), three months (Fig. 7), and one year (Fig. 8)
since the reset, respectively. We also show 1000 simulations of
1000 magnitudes each, obtained both withm�

c � 7:59, which is
drawn from a TGR (light-gray cones), and with the new corner
magnitudes mc�E� obtained for the TGRE model (light-yellow,
orange, green, and blue cones for the four temporal intervals
considered). The results show that within one week of the
Landers earthquake, the TGRE corner seismic moment is
reduced to a value ∼M�

c;0 corresponding to the minimum
energy and then it increases with the energy-reloading process.

In all four cases, the TGRE model gives visually a better fit
to earthquake data than the TGR model: the red step functions
representing the recorded magnitudes are almost completely

contained in the nongray cones, indicating our model’s
capability to better reproduce the time evolution of the real
seismicity occurring in A that just experienced the strong
resetting Landers event. We argue that this general observation
is independent of the choice of M�

c;0 because of the clear bend-
ing in the MFD of the earthquakes inside A.

We explore further the suitability of TGRE for calculating
the likelihood ratio for the nested TGR and TGRE models
(King, 1998). The likelihood ratio is a measure of how much
the TGRE is supported by the data with respect to TGR. In
particular, the log-likelihood function,

EQ-TARGET;temp:intralink-;df6;308;393 log L�θ� � Nβk logMmin �
NMmin −

P
N
i�1 Mi

θ

�
XN
i�1

log

�
βk
Mi

� 1
θ

�
− βk

XN
i�1

logMmin; �6�

is the same for both the models, and it represents the TGRE
when θ � Mc�E� and the TGR when θ � M�

c . In Table 1, we
show the difference log L�Mc�E�� − log L�M�

c � between the two
log likelihoods, computed for the four space–time windows
considered. The results in the first row of Table 1 are relative
to the earthquake data used in Figures 5c–8c, that is, with
m�

c � 7:59, m�
c;0 � 4:3, and τ � 250 yr. As anticipated in

the previous section, to verify the stability of the results as a
function of these parameters, we calculate the likelihood ratio
also for different m�

c and τ (see the first three columns in
Table 1); for all of these cases, we found that m�

c;0 � 4:3 max-
imizes the likelihood ratio in favor of TGRE in the first week of
data. The results of this stability test are shown in the second
row and on. Borrowing the terminology adopted by Kass and
Raftery (1995) for the Bayes factor, we may say that the evi-
dence in favor of TGRE with respect to TGR is, most of the
time, “substantial” and “strong.” As expected, this evidence
diminishes only in some cases for long temporal windows,
but it still remains >0, showing a superiority of TGRE with
respect to TGR independent of the parameters. In general,

TABLE 1
Difference between Tapered Gutenberg–Richter (TGR) and Energy-Dependent TGR Log Likelihoods in Bold and mc�E� Values in
Brackets

Model Parameters One Week One Month Three Months 1 Yr

m�
c � 7:59* τ � 250 yr ‖ m�

c;0 � 4:3 3.16 (4.301) 3.51 (4.32) 2.76 (4.43) 1.04 (4.96)
m�

c � 7:53† τ � 100 yr# m�
c;0 � 4:3 3.15 (4.305) 3.36 (4.38) 1.85 (4.69) 0.26 (5.4)

m�
c � 7:5‡ τ � 1000 yr** m�

c;0 � 4:3 3.16 (4.3) 3.53 (4.301) 2.65 (4.31) 2.62 (4.4)
m�

c � 8:0§ τ � 500 yr†† m�
c;0 � 4:3 3.16 (4.301) 3.51 (4.32) 2.75 (4.43) 1.02 (4.96)

*m�
c � 7:59 as in Kagan et al. (2010).

†m�
c � 7:53 by relations of Wells and Coppersmith (1994).

‡m�
c � 7:5 such as for the San Jacinto fault (Salisbury et al., 2012).

§m�
c � 8 close to that for the northern San Andreas fault.

‖τ � 250 such as for the northern San Andreas fault.
#τ � 100 such as for the San Jacinto fault.
**τ � 1000 as in Sieh et al. (1993).
††τ � 500 close to a mean value.
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the overall first-increasing-then-decreasing trend of the log-
likelihood differences when moving to longer time periods
is expected, as a trade-off between the number of events
and the recharging of the elastic energy of the system.

Finally, we find that the results remain stable also when
considering completeness thresholds mmin higher than 2.5

or when removing the first few days just after the resetting
Mw 7.3 event, in which mmin may be higher than in the follow-
ing days. As a matter of fact, any problem in the completeness
magnitude should have equally affected the MFD of both
events inside and outside A, leaving the difference between
the two distributions unchanged.

Figure 6. Same as Figure 5, but relative to the temporal interval 29 June–29
July 1992, that is, within one month of the day after the Landers resetting
earthquake. The number of events contained in this spatiotemporal
window is 739. The color used for the TGRE model is orange, and
mc�E� � 4:32.

Figure 7. Same as Figure 5, but relative to the temporal interval 29 June–29
September 1992, that is, within three months of the day after the Landers
resetting earthquake. The number of events contained in this spatiotemporal
window is 926. The color used for the TGRE model is green, and
mc�E� � 4:43.
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DISCUSSION AND CONCLUSIONS
Basic physical principles and empirical evidence suggest that
MFD can vary with space and time. To this purpose, in this
article, we have proposed the energy-varying seismic moment–
frequency model TGRE for earthquake nucleation, which
depends on the elastic energy currently available in an area
A of interest. This model acknowledges the elastic rebound

theory and justifies the observation that the largest triggered
earthquakes nucleate always outside the fault section that
has just generated a large shock. In a different perspective,
the model may also describe quantitatively an intermittent
criticality state that is tuned by the available elastic energy.
In other words, the state of self-organized criticality—advo-
cated to explain the power law distribution of the seismic
moments at large spatiotemporal scales (Bak and Tang, 1989;
Sornette and Sornette, 1989)—changes in intermittent critical-
ity when zooming on small space–time windows that have
been recently involved in a large earthquake, indicating that
a fault system approaches and retreats from a critical state by
turns (Ben-Zion et al., 2003; Bowman and Sammis, 2004;
Bebbington et al., 2010).

The TGRE distribution is obtained as a modification of
Kagan’s TGR law in which the corner seismic moment is a
time-varying energy function, that is, it is linked to the proxy
of the amount of energy available in A. The TGRE model is
conceptually simple, and it depends on a few parameters:
(1) the corner seismic moment M�

c , which is loosely related
to the strongest event that may nucleate in A; (2) the temporal
occurrence of the last large earthquake that reset the elastic
energy inA to a residual value; (3) the rate of the energy recov-
ery, which depends on the recurrence time of the fault(s)
involved; and (4) M�

c;0, which is the minimum value for the
corner seismic moment that is achieved after the occurrence
of a resetting earthquake in A. In other words, the TGRE right
tailMc�E� abruptly moves toM�

c;0 just after the occurrence of a
strong (resetting) event, and then it slowly recovers to the long-
term value; in practice, the model inhibits the nucleation of a
large triggered earthquake in segments that recently experi-
enced a large shock. An interesting feature of TGRE is that

Figure 8. Same as Figure 5, but relative to the temporal interval 29 June
1992–29 June 1993, that is, within 1 yr of the day after the Landers
earthquake. The number of events contained in this spatiotemporal window
is 1120. The color used for the TGRE model is blue, and mc�E� � 4:96.
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mum magnitude m�

c;0 achieved after the reset.
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it verifies an invariance condition: because the dimension of
the selected space–time window becomes larger, it converges
to the TGR law with a limiting corner seismic moment M�

c .
The TGRE has been designed purposely simple (depending

on a few clear physical parameters), acknowledging that under-
standability (and usability) is inversely proportional to the
complexity of a model. Similar to other models, it contains
(more or less explicit) subjective choices, but we think that
these choices are less subjective than ignoring the empirical
evidence that strong triggered earthquakes do not nucleate
on a fault that has just ruptured by another strong event, as
is assumed in the (T)GR model. This empirical evidence
can be hardly explained by space–time variability of the b-value
of the GR law, which would lower, not inhibit, the triggering of
large earthquakes on a fault that has just slipped.

Despite its simplicity, we have shown that TGRE may
explain well the statistically significant difference in the MFDs
relative to on- and off-rupture seismicity for the Landers
sequence and that the results are stable for possible variations
of the parameters. In particular, TGRE outperforms TGR for
different values of m�

c;0, showing the strongest difference for
m�

c;0 � 4:3. Further studies will be necessary to reduce uncer-
tainties in this value. For now, we notice that the results seem
to indicate allowing the corner seismic moment to vary in
space and time is more important than the details about the
model’s parameters choice. That said, we underline that the
TGRE reliability (similar to other models) and the comparison
with alternative models (e.g., models based on space–time var-
iations of the b-value) have to be evaluated through prospective
tests. For this model, prospective tests will be carried out in the
framework of the ongoing European Real-time Earthquake
Risk Reduction for a Resilient Europe project, which supports
the Collaboratory for the Study of Earthquake Predictability
network activities in Europe (for the websites, see Data and
Resources; Zechar et al., 2010; Schorlemmer et al., 2018).

Finally, we suggest that the implementation of the TGRE
may offer some benefits for OEF models because it overcomes
one of the conundrums of the best-performing current cluster-
ing models (Taroni et al., 2018) in which the likelihood of a
large earthquake is exactly where another large earthquake
has just occurred. This conundrum has also been identified
as one of the main reasons for the instability of the forecasts
produced by the UCERF3-ETAS model, which has to impose a
space–time variability of the MFD to solve the problem (Field,
Milner, et al., 2017). At the same time, TGRE may also provide
a different explanation of recent empirical evidence relative to
variations of the b-value before and after large earthquakes
close to faults (Gulia and Wiemer, 2019). In particular,
although it is worth remarking that the meaning of the b-value
is questionable for a distribution that is not exponential, such
as the TGR, if the corner magnitude gets closer to the com-
pleteness threshold (even though the slope remains the same),
the b-value necessarily increases (Marzocchi et al., 2020).

More generally, because the use of a proper MFD may have
a large impact on the earthquake predictability, we hope that
this article will stimulate further thoughts on this issue.

DATA AND RESOURCES
The data used in this study are available at http://www.wgcep.org/
ucerf3, https://pubs.usgs.gov/of/2013/1165/, and https://pubs.usgs.
gov/of/2007/1437/ (last accessed January 2019). Finally, for the
Real-time Earthquake Risk Reduction for a Resilient Europe (RISE)
and Collaboratory for the Study of Earthquake Predictability (CSEP)
projects, see, respectively, www.rise-eu.org (last accessed April 2020)
and https://cseptesting.org (last accessed August 2020).
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Abstract:9

The Magnitude–Frequency-Distribution (MFD) of earthquakes is typically modeled10

with the (tapered) Gutenberg–Richter relation. The main parameter of this relation,11

the 𝑏-value, controls the relative rate of small and large earthquakes. Resolving12

spatiotemporal variations of the 𝑏-value is critical to understanding the earthquake13

occurrence process and improving earthquake forecasting. However, this variation is not14

well understood. Here we present unexpected MFD variability using a high-resolution15

earthquake catalog of the 2016–2017 central Italy sequence. Isolation of seismicity16

clusters reveals that the MFD differs in nearby clusters, varies or remains constant in17

time depending on the cluster, and features an unexpected 𝑏-value increase in the cluster18

where the largest event will occur. These findings suggest a strong influence of the19

heterogeneity and complexity of tectonic structures on the MFD. Our findings raise the20

question of the appropriate spatiotemporal scale for resolving the 𝑏-value, which poses21

a serious obstacle to interpreting and using the MFD in earthquake forecasting.22
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1 Introduction23

Beroza et al. [2021] recently highlighted that current earthquake catalogs achieve a high level of24

detail that likely contains more information about earthquake occurrence, allows testing of existing25

hypotheses, and potentially improves earthquake forecasting. One of the main ingredients for26

earthquake forecasting and seismic hazard models is the Magnitude–Frequency-Distribution (MFD)27

of earthquakes, which carries information about the proportion between small and large earthquakes.28

The MFD is typically modeled with the Gutenberg–Richter (GR) relation and its 𝑏-value (the slope29

of the GR relation), which can be used to infer the occurrence rate of large earthquakes from small30

ones. The 𝑏-value is observed to vary in space and time [e. g., Wiemer and Wyss 1997; Hainzl and31

Fischer 2002; Tormann et al. 201«; Gulia et al. 2016; Shelly et al. 2016; Petruccelli et al. 2019;32

Taroni et al. 2021], which is thought to be primarily related to variations of the stress state in the33

crust [e. g., Wyss 197«; Scholz 2015; El-Isa and Eaton 201»]. The 𝑏-value is also considered as an34

indicator for other conditions in the crust, which are directly or indirectly related to the stress state,35

such as faulting style [e. g., Schorlemmer et al. 2005; Petruccelli et al. 2019], locked or creeping36

fault patches [e. g., Wiemer and Wyss 1997; Sobiesiak et al. 2007; Ghosh et al. 2008; Tormann et al.37

201«], material properties [e. g., Mogi 1962; Goebel et al. 2017], fluid pore-pressure perturbations38

[e. g., Hainzl and Fischer 2002; Bachmann et al. 2012; Shelly et al. 2016; Passarelli et al. 2015],39

and critical nucleation length [Dublanchet 2020], among others [see El-Isa and Eaton 201», and40

references therein]. 𝑏-value variations may therefore have an important role in improving our41

physical understanding of earthquake occurrence.42

Estimating the 𝑏-value appears trivial in theory (after all, it is simply the rate parameter of43

an exponential distribution), but not in practice. Several aspects affect the ability to resolve44

representative 𝑏-value variations in earthquake catalogs, such asȷ45

1. the quality of the data, its spatiotemporal selection, and the various ways of sampling it [e. g.,46

Tormann et al. 201«; Roberts et al. 2016];47

2. the sample size and available magnitude range [e. g., Wiemer and Wyss 2002; Marzocchi and48

Sandri 200«; Roberts et al. 2016; Nava et al. 2016];49

«. the used magnitude scale, magnitude binning, and maximum likelihood estimator [Wiemer50

and Wyss 2002; Marzocchi and Sandri 200«; Marzocchi et al. 2020; Herrmann and Marzocchi51

2021];52

». the treatment of departures from an exponential-like GR distribution at the upper end53

(due to truncation or tapering) and lower end (due to the inherent and potentially varying54

incompleteness) [Kagan 2002; Spassiani and Marzocchi 2021; Marzocchi et al. 2020;55

Herrmann and Marzocchi 2021], e. g., the estimation of the magnitude of completeness, 𝑀c,56

as the lower magnitude threshold.57

Although this list is not exhaustive, these considerations highlight that the outcome of a 𝑏-value58

analysis highly depends on expert judgment and/or subjective choices. A recent scientific discussion59

between Gulia and Wiemer [2021] and Dascher-Cousineau et al. [2021] reemphasized that choices60

have to be specific, meaningful, and reproducible to obtain robust results that contribute to a better61

understanding of the underlying physical processes. It appears that this field of study requires62

well-defined schemes and analysis steps. Moreover, choices are critical for real-time applications63
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that need to run automatically, e. g., for operational earthquake forecasting (OEF) purposes [Jordan64

et al. 2011]. Assessing the influence of expert choices and various modeling ideas on the forecasting65

performance needs community efforts such as the Collaboratory for the Study of Earthquake66

Predictability (CSEP) [Zechar et al. 2010; Schorlemmer et al. 2018], which tests forecasting models67

prospectively in a controlled environment.68

Here we argue that a complex earthquake sequence with multiple ruptured fault segments can69

further bias MFD and 𝑏-value analysisȷ If the MFD varies temporally among tectonic structures, an70

averaged view over the whole sequence or a smoothed view over a finite scale (either in space or time)71

will neglect or mask those variations and may lead to inappropriate or biased inferences. Instead, an72

MFD analysis may become more physically meaningful and less ambiguous when accounting for73

the internal structure and evolution of a sequence. Igonin et al. [2018] already showed that the MFD74

can significantly differ in adjacent but well-defined zones of induced seismicity. In this study, we75

introduce a new perspective to investigate the spatiotemporal behavior of the MFD and 𝑏-value by76

isolating spatial seismicity clusters of a complex sequence and dividing them into temporal periods.77

To define clusters, we use the hypocenter density of a seismic sequence; the temporal periods are78

defined by occurrence time of the largest events.79

We use the 2016–2017 central Italy (hereafter ‘CI2016’) sequence as an example due to its complex80

tectonic structure, cascading evolution, and the availability of high-resolution catalogs. The CI201681

sequence occurred in the central Apennines, one of Italy’s most seismically active areas, and was82

marked by a cascade of three main eventsȷ the 𝑀w6.0 (𝑀L6.0) Amatrice event on 2» August 2016,83

the 𝑀w5.9 (𝑀L5.8) Visso event on 26 October 2016, and the 𝑀w6.5 (𝑀L6.1) Norcia mainshock on84

«0 October 2016. On 18 January 2017, four 𝑀w5.0–5.5 events followed near Campotosto. These85

seven events have been caused by movements on SW-dipping normal faults and they ruptured86

multiple fault segments, activating a complex fault system [e. g., Chiaraluce et al. 2017; Improta87

et al. 2019; Michele et al. 2020; Porreca et al. 2020; Tondi et al. 2020; Waldhauser et al. 2021].88

The CI2016 sequence is particular in that it features seismicity in a ∼1 km-thick subhorizontal89

detachment at around 10 km depth, which intersects with and confines almost the entire normal90

fault system above [e. g., Michele et al. 2016; Chiaraluce et al. 2017; Vuan et al. 2017; Michele91

et al. 2020; Waldhauser et al. 2021]. Such a feature was already observed in the Apennines at a92

depth of 15–20 km [De Luca et al. 2009], which suggested the presence of a buried subhorizontal93

thrust related to (the deepest part of) the Apennines build-up. It generally appears as a flat layer, and94

high-resolution catalogs resolved it as a slightly east-dipping, irregular structure (i. e., with locally95

varying depth and thickness) [Chiaraluce et al. 2017]. Vuan et al. [2017] interpreted this feature as96

a midcrustal shear zone, which decouples the upper and lower crust. They found prior seismicity97

mostly to occur along this structure, suggesting that it was loaded tectonically and eventually favored98

the unlocking of the shallower faults through stress transfer. Waldhauser et al. [2021] identified99

partially overlapping fault fragments in this structure.100

Magnitude statistics of CI2016 have been investigated in several recent studies. Montuori et al.101

[2016] found that the Amatrice event originated in an area with a high 𝑏-value and subsequently102

reduced the 𝑏-value to the north and south, suggesting a high potential for further large events.103

Gulia and Wiemer [2019] found a 𝑏-value variation during the course of the sequence, in particular104

(i) a drop after the Amatrice event (especially in the area to the north where the Norcia mainshock105

occurred afterward), interpreted as a still impending large earthquake, and (ii) a 𝑏-value increase106
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after the Norcia mainshock, interpreted as a substantially reduced chance for a further large event107

similar to the tectonic background rate. García-Hernăndez et al. [2021] also observed a “marked108

drop of the 𝑏-value” after the Amatrice event (resolved spatially and in depth) and a recovery of the109

𝑏-value to the background level after the Norcia mainshock; they exclude that these variations are110

caused by an increased 𝑀c after the main events.111

However, those studies did not (i) use a high-resolution catalog, (ii) account for the complexity of the112

sequence including its depth-dependent structure, and (iii) resolve what happened in the days before113

the largest event (Norcia). Using a high-resolution catalog, we investigate whether accounting for the114

complex sequence in an isolated fashion provide a benefit in resolving the spatiotemporal variation115

of the MFD and 𝑏-value. Rather than solely focusing on 𝑏-value estimates, we consider it important116

to exploit more information from the MFD, e. g., by assessing and comparing its exponential-like117

part and reporting the 𝑏-value stability as function of 𝑀c.118

2 Results119

2.1 Description of clusters120

Using the high-resolution catalog of Tan et al. [2021], we spatially isolated the five largest seismicity121

clusters (Cluster 1–5, hereafter abbreviated with C1, C2, etc.) following the procedure described122

in Methods. Figure 1 shows that the obtained clusters are not randomly distributed, but instead123

highlight the complex spatial structure of the sequence. For instance, C1 comprises seismicity in124

the northern part of the subhorizontal structure, parts of the normal fault (Mt. Vettore) that ruptured125

during the Norcia mainshock, and this mainshock hypocenter itself. C2 represents seismicity in126

the southern part of the subhorizontal structure, and C« captures the shallow northern part of the127

sequence, including the Visso hypocenter. C» and C5 relate to small-scale structures. These five128

clusters correspond to the five largest volumes with high hypocenter density (see Supplementary129

Fig. S1). The Amatrice event does not belong to any of the main clusters because the area around its130

hypocenter is devoid of events [see also Improta et al. 2019; Michele et al. 2020; Tan et al. 2021].131

The Campotosto events were also not assigned to a main cluster.132

Figure 2 shows that each cluster has a distinct temporal activity. For instance, C1 was active133

throughout the sequence until the Campotosto events; C2 was quiet after the Visso event until134

the Norcia mainshock while C« was very active in this period. C» and C5 were mostly active135

toward the end of the sequence, along with the other clusters in roughly comparable proportions.136

Supplementary Fig. S2 and Supplementary Note 1 summarize the cluster statistics in terms of size137

and ratio for each period, making it more apparent that at least ∼50% of the events in each period of138

the sequence belong to a cluster. Moreover, up to two clusters were dominating each period except139

for the last period.140
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Figure 1: Map view and depth sections of the 2016–2017 central Italy (‘CI2016’) seismicity with identified

clusters (see legend). The depth sections are exaggerated by a factor of three. To better reveal the structure

of the individual clusters, the events are plotted ascending by their cluster number on top of ‘unclustered’

events, neglecting a physically correct appearance. The main events ‘Amatrice’, ‘Visso’, ‘Norcia’, and four

‘Campotosto’ events are represented by larger circles; in the map view, they are annotated with the respective

initial letter (A, V, N, C). Supplementary Fig. S1 shows the event density for the same data.

2.2 Cluster-based MFD analysis using the whole sequence141

For the statistical analysis of the MFD, we follow the procedure described in Methods. Table 1 and142

Fig. « indicate differences and similarities in the MFD among the clusters. In particular, Table 1143

suggests that C1, C2, and C« have identical MFD shapes, but that the MFD of C1 and C2 are distinct144

from the ones of C» and C5. There is a tendency that C1 differs from C2, although not statistically145

significant. Figure « provides more details about the MFD behavior in terms of the 𝑏-value as146

function of 𝑀c. For instance, the largest clusters C1–C« (red, blue, and green, respectively) have147

comparable 𝑏-values (∼1.2) at their corresponding 𝑀Lilliefors
c , but behave differently for increasing148

𝑀cȷ for 𝑀w ≥ 3.0, the 𝑏-value is much higher in C« than in C1 or C2. The small-scale clusters C»149
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Figure 2: Temporal evolution of CI2016 seismicity colored by cluster association. Note that the x-axis

represents the event index of all shown events (i. e., excluding unclustered events). The horizontal whiskers at

the top indicate the periods of the temporal subsets. The bottom panel shows the event proportion of each

cluster as fraction of the total events (including unclustered events) within a rolling window of the previous 24

hr.

Table 1: Pairwise comparison of the cumulative magnitude distribution of each cluster against the

others.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cluster 1 0.089 0.26 2.2e-06 1.2e-06

Cluster 2 0.089 0.59 0.024 0.0084

Cluster 3 0.26 0.59 0.49 0.36

Cluster 4 2.2e-06 0.024 0.49 0.51

Cluster 5 1.2e-06 0.0084 0.36 0.51

𝑝-values of two-sample Kolmogorov–Smirnov tests (see Methods). Statistically significant 𝑝-values are highlighted in

bold.

and C5 (yellow and cyan, respectively) show the highest overall 𝑏-value. The Lilliefors 𝑝-value150

is useful to judge the reliability of the 𝑏-value; a 𝑝-value dropping below 0.1 indicates that the151

𝑏-value for C1 and C« below 𝑀w2.0 does not relate to a persistent exponentiality with 𝑀c, which152

can have several reasons (see Supplementary Note 2.2) and necessitates an inspection of the MFD in153

individual periods, as done in the following subsection.154
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Figure 3: Magnitude statistics for all extracted data (black) and individual clusters (see legend). The

top panel shows the data in terms of their magnitude–frequency distribution (MFD). Note that a tiny value

is added to each MFD (between −0.1 and 0.1) to avoid visual overlaps at large magnitudes. The middle

and bottom panel show, as a function of lower magnitude cutoff, or magnitude of completeness, 𝑀c, the

Lilliefors 𝑝-value (assuming an exponential distribution as null hypothesis) and the 𝑏-value (the slope of the

fitted Gutenberg–Richter relation), respectively (see Methods). The 𝑀Lilliefors
c estimates are indicated for each

cluster in the top and bottom panels with a circle marker. Supplementary Fig. S3 shows the same analysis

using local magnitudes.

For the sake of completeness, we repeated the analysis using local magnitudes, 𝑀L (see Supple-155

mentary Fig. S«), which introduces a different MFD behavior for the individual clusters due to a156

narrower exponential range (see Supplementary Note 2.«).157
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Table 2: Pairwise MFD comparison of temporal subsets. Like Table 1, but for three periods of Cluster 1, 2,

and 3 that exclude short-term incompleteness (STAI).

Cluster 1 Cluster 2 Cluster 3

(pre-V.) (pre-N.) (pre-C.) (pre-V.) (pre-N.) (pre-C.) (pre-V.) (pre-N.) (pre-C.)

C1 (pre-Visso) 0.0037 0.33 0.59 0.73 0.03 2.1e-05 0.86 0.79

C1 (pre-Norcia) 0.0037 0.23 0.01 0.73 0.044 1.3e-09 0.0056 0.052

C1 (pre-Campotosto) 0.33 0.23 0.52 0.42 0.21 6e-06 0.62 0.013

C2 (pre-Visso) 0.59 0.01 0.52 0.78 0.28 2.5e-06 0.51 0.067

C2 (pre-Norcia) 0.74 0.72 0.42 0.79 0.51 0.093 0.43 0.26

C2 (pre-Campotosto) 0.03 0.044 0.21 0.28 0.5 7.6e-08 0.0087 0.018

C3 (pre-Visso) 2.1e-05 1.3e-09 5.8e-06 2.5e-06 0.093 7.6e-08 3.1e-06 0.012

C3 (pre-Norcia) 0.86 0.0056 0.62 0.51 0.42 0.0087 3.2e-06 0.098

C3 (pre-Campotosto) 0.79 0.052 0.013 0.068 0.26 0.018 0.012 0.099

2.3 Cluster-based MFD analysis using temporal subsets158

We extend the spatial analysis by a temporal component using three periods that exclude the159

short-term aftershock incompleteness (STAI) between the main events, namely ‘pre-Visso’, ’pre-160

Norcia’, and ‘pre-Campotosto’ (see Methods). Table 2 provides a more granular breakdown of MFD161

variations above 𝑀Lilliefors
c than Table 1, also temporally within the same cluster. For instance, in162

C1, only pre-Visso and pre-Norcia are distinct; in C2, no period is distinct, and in C«, pre-Visso is163

distinct from the other two periods. The MFD in pre-Campotosto is never distinct in any cluster.164

Comparisons among clusters for the same temporal period show no significant differences between165

C1 and C2, but when comparing C1 or C2 to C«. (Note that the sample size of C2 in pre-Norcia is166

very small (26 events), which reduces the power of the KS test to detect potential differences for167

pairs that include this subset.) The most unique subset is C« during pre-Visso, which differs from168

almost all other subsets. Of all «6 pairs, 15 (»2 %) are significantly different.169

Further investigating the MFDs in terms of a 𝑀c-dependent 𝑏-value (Figs. » and 5) provides a more170

nuanced discrimination. The most remarkable observation is that the 𝑏-value in C1 is highest before171

the Norcia mainshock—it has increased after the Visso event from 1.4 to 1.6. After the Norcia172

mainshock, the 𝑏-value remained at a high level (1.5 in the pre-Campotosto period). In C2, the173

𝑏-value remained high at ∼1.45 both before the Visso and after the Norcia mainshock. (This cluster174

does not have enough events in the pre-Norcia period to estimate a 𝑏-value.) In C«, which contains175

the Visso event, the 𝑏-value increased from 1.0 in pre-Visso to 1.4 in pre-Norcia, at which level it176

stayed also after the Norcia mainshock.177

Fig. » facilitates a temporal comparison of the MFD among the clusters. In pre-Visso, the 𝑏-value is178

similar in C1 and C2 at around 1.4, and much lower in C« (1.0). Prior to the Norcia mainshock,179

the 𝑏-value increased both in C1 and C« (to 1.4−1.6); C2 does not provide enough data. After the180

Norcia mainshock (i. e., pre-Campotosto), the 𝑏-value remains elevated in C1–C« (1.3−1.5) and181

C1 and C2 have similar 𝑏-values again. After the Campotosto events (see Supplementary Fig. S8,182

‘post-Campotosto’), the 𝑏-value still remains elevated in C1–C« (1.4−1.5).183

For the sake of completeness, we repeated the analysis using 𝑀L (see Supplementary Figs. S», S5,184
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Figure 4: Magnitude statistics in three individual periods of Cluster 1 (left), Cluster 2 (center), and

Cluster 3 (right). Like Fig. 3, the top panels show clusters in terms of their magnitude–frequency distribution;

the middle and bottom panels show the Lilliefors 𝑝-value and 𝑏-value as function of 𝑀c, respectively. Supple-

mentary Fig. S4 shows the same analysis using local magnitudes. Supplementary Figs. S7 and S8 compares

the periods shown here with periods that include STAI.

and Supplementary Note 2.«), which reproduces our main findings qualitatively with comparable185

relative 𝑏-value changes, albeit the 𝑏-value behaves differently as function of 𝑀c owing to the scale186

change. For a comparison using temporal periods that include STAI, see Supplementary Note 2.»187

and Supplementary Figs. S6–S8.188

3 Discussion189

We found that individual earthquake clusters that represent the most active zones of a complex190

sequence are characterized by a significantly different MFD behavior. In particular, the MFD191

can experience variations as temporal changes and spatial differences, or remain identical within192

one cluster throughout the sequence. This observed MFD variability is likely due to fine-scale193

heterogeneity and complexity of the tectonic structures that were activated in this sequence. In194
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Figure 5: Reordering the magnitude statistics of Fig. 4 temporally by periods: ‘pre-Visso’ (left), ‘pre-

Norcia’ (center), and ‘pre-Campotosto’ (right). Like Figs. 3 and 4, the top panels show clusters in terms of their

magnitude–frequency distribution; the middle and bottom panels show the Lilliefors 𝑝-value and 𝑏-value as

function of 𝑀c. Supplementary Fig. S5 shows the same analysis using local magnitudes.

the following, we first discuss the observed temporal behavior, followed by a discussion of spatial195

differences and similarities, an interpretation of our findings, and a summary.196

Regarding temporal changes, the most striking observation is the progressive 𝑏-value increase in the197

structure where the strongest earthquake eventually occurred (C1). Apparently, a high 𝑏-value did198

not prevent the nucleation of a large rupture in this structure. This resolved behavior differs from199

the general observation that the 𝑏-value decreases prior to large earthquakes [e. g., Suyehiro et al.200

196»; Nanjo et al. 2012; Tormann et al. 2015; Gulia et al. 2016; Gulia and Wiemer 2019], albeit201

similar observations to ours do exist [e. g., Nanjo and Yoshida 2017]. The increasing 𝑏-value in202

C1 after the Visso event highlights that activity in one cluster may influence the MFD in another203

one. After the Visso event, the 𝑏-value also increased in its own cluster (C«), which corroborates204

that large events may influence the MFD in their surrounding as already found by [Gulia et al.205

2018]. The later Norcia mainshock, however, did not alter the MFD in the three main clusters206

further and the 𝑏-value remained high—also after the Campotosto events. This stagnating 𝑏-value207

highlights that the MFD eventually became insensitive to strong seismicity even though it had208

10



experienced significant temporal variations in the same structures earlier. This ambivalent character209

is compounded by the MFD behavior in C2, where the MFD locally remained constant throughout210

the sequence and apparently unaffected by surrounding seismicity.211

When comparing clusters spatially regarding the whole sequence, we found differences in the MFD212

between the largest clusters (C1 and C2) and the smaller ones (C» and C5). The former have overall213

lower 𝑏-value estimates, which are due to the stronger influence of STAI as a result of their proximity214

to larger events. In fact, the 𝑏-value estimate can be much lower in periods that include STAI (see215

Supplementary Note 2.» and Supplementary Figs. S7–S9). In each of these time periods, we found216

spatial MFD differences among the largest clusters (C« differing from C1 and C2). Simultaneously,217

MFD similarities coexisted among these clusters (C1 and C2), although we do not have evidence for218

every time period, such as for pre-Norcia when C2 only provides few samples. C1 and C2 have219

in common that they represent the majority of seismicity in the subhorizontal structure at depth220

(its northern and southern extension, respectively). Their MFD differs from C« in each individual221

period and tend toward a higher 𝑏-value, which means that this subhorizontal structure is not only222

tectonically distinct from the shallower normal faults (see Introduction), but also in terms of the223

MFD.224

Although our study focuses on raising awareness of appropriately resolving MFD and 𝑏-value225

variations, we briefly speculate about the underlying causes for our most remarkable observations226

in this sequence. The marked MFD variability among the clusters over time likely reflects a227

heterogeneous stress field and/or a complex fault geometry with significant contributions from the228

subhorizontal detachment. Moreover, a complex rupture process is suggested by the fact that only229

some of the main events belong to clusters—a result of the different event densities surrounding230

these hypocenters. The generally higher 𝑏-value in the subhorizontal structure could be caused231

by the structure’s reduced capacity to accumulate stress (i. e., low differential stress). Instead of232

accumulating stress, it preferentially transfers stress to the shallow fault system, favoring its unlocking233

[Vuan et al. 2017]. Moreover, this subhorizontal thrust is known to release microearthquakes234

quasi-continuously along its entire length [Chiaraluce 2012; Chiaraluce et al. 2017], occasionally in235

minor sequences [Ciaccio 2016; Moschella et al. 2021], but not hosting larger earthquakes (which236

should have an extensional mechanism). The very high 𝑏-value prior and close to the hypocenter of237

the Norcia mainshock could be explained with (i) the generally high 𝑏-value in the subhorizontal238

structure, because C1’s pre-Norcia seismicity occurred within its north-eastern extension (see239

Supplementary Fig. S10), whereas its pre-Visso seismicity was located in a shallower part; and (ii) a240

consequence of the previous two main events (Amatrice and Visso) and their aftershocks generally241

reducing the differential stress in its surrounding by releasing built-up strain, i. e., stored energy, on242

the normal faults. Note that the Norcia mainshock nucleated in between the pre-Norcia and the243

pre-Visso subset of C1 (i. e., the aftershock zones of Amatrice and Visso, respectively, see also244

Improta et al. [2019]), which is consistent with observations that large events tend to nucleate at245

the rim of seismic clouds [van der Elst and Shaw 2015; Stallone and Marzocchi 2019] and the246

cascading stress transfer hypothesis [e. g., Ellsworth and Bulut 2018; Gomberg 2018].247

In summary, our study demonstrated that the spatiotemporal isolation of seismicity clusters resolves248

a distinct MFD behavior among the most active zones over time, including influences between249

them. We therefore argue that the MFD highly depends on the observed substructure. Since the250

most active structures in turn influence the overall MFD behavior of a sequence, a consideration251

11



of the activity in individual structures allows us to decompose and analyze the most important252

contributions of a complex sequence. Our findings point to the problem of choosing an appropriate253

spatiotemporal scale to resolve the 𝑏-value, challenging existing approachesȷ A too large scale254

merges potentially different MFD behavior of individual structures and a too fine resolution obscures255

the tectonic relation and reduces the statistical robustness. The cluster-based approach presented256

here uses the distribution of the seismicity itself to choose a scale that is physically meaningful and257

provides robust statistics. Moreover, a spatial scale inferred from a cluster analysis may serve as an258

appropriate reference volume for the background 𝑏-value—provided that the (moment) magnitude259

estimates are consistent. In Supplementary Note 2 we discuss several more factors and choices that260

influence and potentially bias the 𝑏-value estimate, most importantly related to the sample size,261

exponentiality, STAI, and magnitude scale. Those aspects are not always carefully addressed when262

performing 𝑏-value analyses. We highlight that the absolute 𝑏-value has little meaning not only due263

to its dependence on the magnitude scale (see Supplementary Note 2.«), but also on the particular264

conversion relation (see Supplementary Note 2.5 and Supplementary Fig. S9). We hypothesize that a265

complex and distinct MFD behavior is not unique to the CI2016 sequence, but likely occurs in other266

regions and sequences. Our method may be beneficial in studying the peculiarities of spatiotemporal267

MFD variability and improving our understanding of the processes that influence seismicity. Even268

if the physical mechanisms remain hidden, recognizing that the MFD behaves complex potentially269

improves spatiotemporal forecast performance. Our approach based on an established clustering270

algorithm may also help to reduce the amount of expert judgment and subjective choices in MFD271

analysis, which could facilitate an application in real-time. Future work may focus on a refined272

identification of spatiotemporal clusters to improve MFD and 𝑏-value analysis, possibly by not273

relying solely on event density.274

4 Methods275

4.1 High-resolution earthquake catalog of the sequence276

We use the high-resolution catalog of Tan et al. [2021], which spans from 2016-08-15 to 2017-08-15,277

and extracted a spatial subset as followsȷ depth < 12 km; UTM eastingȷ ««0–«70 km (about longitude278

12.94–13.40); UTM northingȷ »690–»790 km (about latitude 42.34–43.25). Only events with279

moment magnitudes 𝑀w ≥ 1.5 were used, totaling 76 055 events. The 𝑀w contained in the catalog280

were converted from local magnitudes, 𝑀L, using the polynomial fit of Grünthal et al. [2009], an281

average European scaling relation based on catalogs of different seismological agencies with most282

events having 𝑀L > 1.5 and 𝑀w ≳ 1.5. For magnitudes of large events to match, Tan et al. [2021]283

calibrated its constant (0.53) to 0.817 (i. e., +0.287).284

4.2 Creating spatial earthquake clusters and temporal subclusters285

Seismicity was grouped spatially into clusters using DBSCAN [Density-Based Spatial Clustering286

of Applications with Noise, Ester et al. 1996], which groups points based on how closely they287

are packed together. Points that lie in low-density regions are left as outliers. Because the288
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horizontal extension of the CI2016 sequence is several times larger than the vertical extension,289

density-connected clouds of hypocenters preferentially extend in horizontal directions. To improve290

the clustering analysis for such an anisotropic case, data dimensions are usually rescaled beforehand.291

We therefore rescale the hypocenter coordinates to a uniform extent in each direction, i. e., rescaled292

into a cube. This procedure increases the local point density in horizontal planes, which facilitates293

identifying hypocenter clusters with horizontally elongated shapes (see Supplementary Fig. S1).294

We then applied DBSCAN with the following parametersȷ 𝜖 = 0.40, the neighborhood radius and295

𝑍 = 200, the minimum number of points required to form a dense region. This configuration yielded296

nine clusters, from which we selected the five largest (C1–5, descending by size) and labeled the297

remaining events as ‘unclustered’. Their spatial distribution is shown in Fig. 1 and the data provided298

as Supplementary Data.299

To enable a temporal analysis, each of the largest clusters C1–C« was divided into three periods (see300

indicators in Fig. 2)ȷ301

• ‘early’ȷ events before the Visso event;302

• ‘mid’ȷ events from the Visso event until two days after the Norcia mainshock;303

• ‘late’ȷ the rest.304

Note that there is too few data in C» and C5 to benefit from the division.305

As illustrated in Supplementary Fig. S6, these periods are affected by short-term aftershock306

incompleteness [STAI, Kagan 200»; Helmstetter et al. 2006; Hainzl 2016; de Arcangelis et al.307

2018, see also Supplementary Note 2.»]. Supplementary Fig. S6 makes use of equalized plot scales308

as suggested by Agnew [2015] and overlays the event density as suggested by W. Ellsworth (pers.309

comm., 2021). In this way, Supplementary Fig. S6 informs us about the STAI duration after each310

main event, leading us to exclude STAI by using a temporal subset of each period for C1, C2, and311

C« (see indicators at the top of Fig. 2)ȷ312

• ‘pre-Visso’ȷ like early, but excluding the first 0.8 days after the Amatrice event;313

• ‘pre-Norcia’ȷ like mid, but excluding the first 0.6 days after the Visso event and 2.0 days after314

the Norcia mainshock;315

• ‘pre-Campotosto’ȷ like late, but before the Campotosto event;316

• ‘post-Campotosto’ȷ like late, but after the Campotosto event excluding the first 0.4 days.317

4.3 Earthquake statistics318

The clusters and their temporal subsets are investigated in terms of their MFD. To quantify MFD319

differences, we calculate the 𝑏-value as function of 𝑀c. The 𝑏-value is determined using the320

bias-free maximum likelihood estimation of Tinti and Mulargia [1987] and Marzocchi and Sandri321

[200«] for sample sizes 𝑁 ≥ 50. The 𝑏-value requires an exponential distribution of the magnitude322

above 𝑀c to be physically meaningful [Marzocchi et al. 2020]. To assess the exponentiality of the323

MFD, we apply the Lilliefors test [Marzocchi et al. 2020; Herrmann and Marzocchi 2021], using324

the implementation of Herrmann and Marzocchi [2020], and obtain a 𝑝-value as function of 𝑀c,325
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which expresses the probability to observe the MFD assuming that the exponential distribution is326

the underlying distribution. For a significance level of 𝛼 = 0.1, we derive the lowest magnitude327

level for which the MFD can be considered exponential, referred to as 𝑀Lilliefors
c . We always refer to328

the 𝑏-value at 𝑀Lilliefors
c .329

As an alternative to quantify MFD differences, we use the two-sample Kolmogorov–Smirnov (KS)330

test and compare the MFD of clusters or their temporal subsets pairwise. For each pair, the largest331

𝑀Lilliefors
c is used as lower magnitude cutoff. The KS test returns a 𝑝-value as a measure for the332

strength of evidence against the null hypothesis that the two MFDs come from the same parent333

distribution. We interpret a 𝑝-value < 0.05 as a statistically significant difference.334

We do not explore whether the MFD can be characterized by a tapered GR distribution, and therefore335

neglect variations of the corner magnitude, e. g., due to released energy close to faults [Spassiani336

and Marzocchi 2021]. While the 𝑏-value correlates with the largest magnitude [Marzocchi et al.337

2020], the KS test has reduced sensitivity toward the tails of the distributions. We assume that338

distinct 𝑏-values or significant 𝑝-values reflect differences or changes of the entire exponential part339

of the MFD.340

4.4 Prior seismicity341

The high-resolution catalog of Tan et al. [2021] only contains 15 events with 𝑀w ≥ 1.5 before the start342

of the sequence (i. e., before the Amatrice event). For a comparison of seismicity during the sequence343

with prior seismicity, we have initially considered HORUS [Lolli et al. 2020, horus.bo.ingv.it]344

as a temporally extensive catalog that provides 𝑀w magnitudes. Those magnitudes were converted345

from 𝑀L using a magnitude regression that differs from the conversion relation used in the CI2016346

catalog of Tan et al. [2021]. In fact, a comparative MFD analysis for CI2016 seismicity shows that347

the 𝑏-value differs considerably between both catalogs (0.2 units at 𝑀Lilliefors
c , see Supplementary348

Note 2.5 and Supplementary Fig. S9). Therefore, the two 𝑀w scales are not consistent with each349

other. This inconsistency does not allow a reliable comparison of the 𝑏-value among these two350

catalogs (e. g., against a reference “background” 𝑏-value based on HORUS). We therefore did not351

consider HORUS data in our MFD analyses.352
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Key Points: 8 

• We compare the foreshock activity in southern California with the prediction of the best-9 
performing earthquake clustering model. 10 

• Sequences with an anomalous excess of foreshocks are associated mostly with moderate 11 
mainshocks and preferentially with high heat flow. 12 

• The prevalence of anomalous foreshock sequences in zones of high heat flow does not 13 
support the pre-slip nucleation model.  14 
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Abstract 15 
Foreshock analysis promises new insights into the earthquake nucleation process and could 16 
potentially improve earthquake forecasting. Well-performing clustering models like the 17 
Epidemic-Type Aftershock Sequence (ETAS) model assume that foreshocks and general 18 
seismicity are generated by the same physical process, implying that foreshocks can be identified 19 
only in retrospect. However, several studies have recently found higher foreshock activity than 20 
predicted by ETAS. Here, we revisit the foreshock activity in southern California using different 21 
statistical methods and find anomalous foreshock sequences, i.e., those unexplained by ETAS, 22 
mostly for mainshock magnitudes below 5.5. The spatial distribution of these anomalies reveals 23 
a preferential occurrence in zones of high heat flow, which are known to host swarm-like 24 
seismicity. Outside these regions, the foreshocks generally behave as expected by ETAS. These 25 
findings show that anomalous foreshock sequences in southern California do not indicate a pre-26 
slip nucleation process, but swarm-like behavior driven by heat flow.  27 

Plain Language Summary 28 
Many studies have observed that large earthquakes are preceded by smaller events, called 29 
foreshocks. If they have distinctive characteristics that make them recognizable in an ongoing 30 
sequence in real time, they can significantly improve the forecasting capability of large 31 
earthquakes. To investigate the nature of foreshocks, we compare real seismicity with the 32 
expectation of the most skilled earthquake clustering model, which assumes that foreshocks do 33 
not have any distinctive characteristics with respect to general seismicity. We find that 34 
discrepancies between reality and expectation mostly affect foreshock sequences that anticipate 35 
moderate mainshocks with magnitudes below 5.5. We show that those anomalous foreshock 36 
sequences tend to occur where the heat flow is high, which are already known for the occurrence 37 
of swarm-like sequences. Outside these regions, the observed foreshock activity is explained 38 
well by the clustering model. These findings indicate that anomalous foreshock sequences are 39 
not diagnostic of impending large earthquakes but are influenced by the heat flow.   40 

1 Introduction 41 
It is well known that many large earthquakes are preceded by smaller events (e.g., 1999 M7.6 42 
Izmit, Turkey (Bouchon et al., 2011; Ellsworth & Bulut, 2018), 2009 M6.1 L’Aquila, Italy 43 
(Chiaraluce et al., 2011), 2011 M9.0 Tohoku, Japan (Kato et al., 2012), 2019 M7.1 Ridgecrest, 44 
USA (Meng & Fan, 2021)), which are (a posteriori) called foreshocks. The role of foreshocks in 45 
earthquake predictability can be epitomized by two still debated conceptual hypotheses about 46 
earthquake nucleation: the “pre-slip model” versus the “cascade model” (Ellsworth & Beroza, 47 
1995; Gomberg, 2018). According to the former, foreshocks are diagnostic precursors, because 48 
they are triggered by an aseismic slip that precedes large earthquakes; in the latter model, 49 
foreshocks are like any other earthquake, which trigger one another, with one of them eventually 50 
becoming exceedingly larger (the mainshock). 51 
Notwithstanding the still active debate on these hypotheses, seismologists are not yet able to 52 
recognize foreshocks in real-time, tacitly implying that foreshocks are not different from the rest 53 
of seismicity, indirectly supporting the cascade model. This view is further supported by the fact 54 
that the current best performing short-term earthquake forecasting model (Taroni et al., 2018)—55 
the Epidemic-Type Aftershock Sequences (ETAS; Ogata, 1988) model—assumes that 56 
foreshocks, mainshocks, and aftershocks are undistinguishable and governed by the same 57 
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process. ETAS belongs to the class of branching point process models known in the statistical 58 
literature as Hawkes or self-exciting point processes: every earthquake can trigger other 59 
earthquakes according to established empirical relations, with their magnitudes being 60 
independent from past seismicity. In essence, ETAS implicitly acknowledges the cascade model 61 
and its good forecasting performance makes ETAS an appropriate null hypothesis.  62 
Instead, if foreshocks are dominated by mechanisms other than earthquake triggering, as the pre-63 
slip model expects, they could be distinguished from general seismicity and potentially increase 64 
the probability for a larger earthquake to follow. Several studies recently investigated foreshock 65 
sequences of southern California and found that they deviate from expectations of the classical 66 
ETAS model with spatially invariant parameters. For example, Seif et al. (2019), Petrillo and 67 
Lippiello (2021), and Moutote et al. (2021) find, albeit at varying degrees, a higher foreshock 68 
activity in real seismicity than in synthetic catalogs simulated with ETAS. Hence, ETAS appears 69 
to be unable to predict all the observed seismicity, which may suggest that foreshocks are distinct 70 
from general seismicity and governed by different mechanisms. These findings provide hope that 71 
foreshocks are distinguishable and could pave the way to significantly improved earthquake 72 
predictability.  73 

Here we reexamine foreshock activity in southern California and investigate the existence and 74 
main characteristics of foreshock sequences that cannot be explained by ETAS, i.e., anomalous 75 
foreshock sequences. In other words, we look for evidence against the cascade model. To make 76 
the results comparable to previous analyses, we use an ETAS model with spatially invariant 77 
triggering parameters. We perform two different statistical tests and consider the potential 78 
influence of subjective choices, such as the method to identify mainshocks and their foreshocks. 79 
To fathom the main characteristics of possible anomalous foreshock sequences, we investigate 80 
different magnitude classes and analyze the spatial correlation with heat flow as a physical 81 
parameter. With our findings, we aim to contribute to improving earthquake forecasting and the 82 
understanding of earthquake nucleation processes.  83 

2 Data and Methods 84 
We use the relocated earthquake catalog for southern California catalog (Hauksson et al., 2012, 85 
see Data Availability Statement), selecting all earthquakes with 𝑀 ≥ 2.5	from 1-1-1981 to 31-86 
12-2019 except nuclear events (i.e., at the Nevada Test site) from the catalog, totaling 47’574 87 
events.  88 
Because there is no absolute and precise procedure to identify mainshocks, foreshocks, and 89 
aftershocks, the way of analyzing a catalog and distinguishing these events is unavoidably 90 
subjective (Molchan & Dmitrieva, 1992; Zaliapin et al., 2008). To mitigate this subjective 91 
choice, we analyze the catalog using two quite different techniques: the Nearest-Neighbor (NN) 92 
clustering analysis proposed by Baiesi and Paczuski (2004) and elaborated by Zaliapin et al. 93 
(2008), and the spatiotemporal windows (STW) method (Agnew and Jones, 1991; Marzocchi 94 
and Zhuang, 2011; Seif et al., 2019). 95 

The NN method operates in a space-time-magnitude domain based on the NN distance ηj, i.e., 96 
the space-time-magnitude distance between event j and all earlier events i that is minimal. The 97 
event i with the shortest distance to event j is called NN, or parent, event. By assigning a parent 98 
event to each event j, all events become associated with another. To identify individual families 99 
(i.e., sequences) or single events, we use the same threshold 𝜂! 	= 	10"# as Zaliapin et al. 100 
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(2008), which effectively removes event associations with too large ηj. For each sequence, we 101 
refer to the event with the largest magnitude as the mainshock and all associated events that 102 
occur before it as its foreshocks. We only consider sequences with foreshocks and ignore those 103 
that have no foreshocks. 104 
 105 

For the STW method, we initially consider all events with magnitude 𝑀 ≥ 4 as possible 106 
mainshocks. Then, we exclude events that are (i) preceded by a larger event within a 107 
spatiotemporal window of 10 km and 3 days; (ii) preceded by an event with 𝑀 > 5 within 100 108 
km and 180 days; and (iii) not preceded by at least one event within 10 km and 3 days. For the 109 
remaining mainshocks, all preceding events within a window of 10 km and 3 days are considered 110 
foreshocks. 111 

To simulate synthetic catalogs, we use the ETAS model of K. Felzer (Felzer et al., 2002, see 112 
Data Availability Statement and supporting information Text S1 and Table S1) with spatially 113 
invariant triggering parameters given by Hardebeck et al. (2008, see Table S2). Using an 114 
available ETAS model reduces potential influences from subjective parameter choices. We 115 
verify its overall reliability by comparing the number of events in the real catalog with the 116 
distribution of simulated events in the synthetic catalogs (see Text S2 and Figures S1 and S2), 117 
finding that the ETAS model is consistent with the observation. 118 
Once the mainshocks and their foreshocks have been identified in both the real and 1000 119 
synthetic catalogs, we compare their foreshock statistics using two approaches named TEST1 120 
and TEST2. The two tests are described in detail below; both use the cascade model, which is 121 
implied by ETAS, as null hypothesis but emphasize different aspects of the problem. TEST1 122 
involves the average number of observed foreshocks per sequence, whereas TEST2, which has 123 
been inspired by the work of Seif et al. (2019), involves the frequency of observing a certain 124 
number of foreshocks per sequence. We apply both tests to various mainshock magnitude classes 125 
𝐶$ = {4.0 ≤ 𝑚$ < 4.5, 4.5 ≤ 𝑚$ < 5.0, 5.0 ≤ 𝑚$ < 5.5, 5.5 ≤ 𝑚$ < 6.0, 𝑚$ ≥ 6.0} and 126 
foreshock magnitude thresholds 𝑇% = {𝑚% ≥ 2.5, 𝑚% ≥ 3.0, 𝑚% ≥ 3.5, 𝑚% ≥ 4.0}; these choices 127 
are based on Seif et al. (2019), but we add the class 4.0 ≤ 𝑚$ < 4.5 to 𝐶$. Although we report 128 
statistical test results, we do not formally account for applying the tests multiple times; the 129 
results are therefore meant to indicate possible patterns of (apparently) anomalous foreshock 130 
activity. 131 

In TEST1, the null hypothesis under test 𝐻!
(') is that the average number of foreshocks in the real 132 

catalog is not larger than the corresponding quantity in the synthetic catalogs. For each 133 
mainshock magnitude class c ∈ 𝐶$ and each foreshock magnitude threshold t ∈ 𝑇%, we count the 134 
number of mainshocks (with foreshocks), 𝑁$real, and the number of foreshocks 𝑁Freal in the real 135 
catalog; 𝑁Freal is normalized by 𝑁$real to obtain 𝑁9F./01. We calculate the same quantity for each  136 
synthetic catalog and build its empirical cumulative distribution function (eCDF); if 𝑁9Freal	is 137 
above the 99th percentile of the eCDF, we reject 𝐻!

(') at a significance level of 0.01.  138 

In TEST2, the null hypothesis under test 𝐻!
(2) is that for each number of foreshocks, 𝑁% > 0,  the 139 

frequency of observed cases is not larger than the frequency in synthetic catalogs. For each 𝑐 ∈140 
𝐶$ and each 𝑡 ∈ 𝑇%, we count the number of mainshocks that have a certain 𝑁% and normalize it 141 
by 𝑁$./01. In this way, we obtain the probability mass function (PMF) for the real catalog as a 142 
function of 𝑁%. Then, we apply the same procedure to each synthetic catalog and obtain 1000 143 
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synthetic PMFs, for which we calculate the 99th percentile at each 𝑁%. Finally, at each 𝑁%, we 144 
reject 𝐻!

(2) at a significance level of 0.01 if the corresponding PMF value of the real catalog is 145 
larger than the 99th percentile (i.e., when the real catalog contains more foreshock sequences with 146 
this specific 𝑁% than expected by ETAS). In essence, TEST2 seeks anomalies at every 𝑁%, 147 
whereas TEST1 could be seen as a cumulative version of TEST2.  148 
Based on the results of the tests, we can label each foreshock sequence as ‘anomalous’ or 149 
‘normal’ using an intuitive approach: for TEST1, if the null hypothesis is rejected for a certain 150 
class, all foreshock sequences with a 𝑁% larger than the 99th percentile of the eCDF in that class 151 
are labeled as ‘anomalous’ (and ‘normal’ otherwise); for TEST2, if the null hypothesis is 152 
rejected for a specific 𝑁%, all sequences with this	𝑁% are labeled as ‘anomalous’ (and ‘normal’ 153 
otherwise). Effectively, a foreshock sequence in 𝑐 ∈ 𝐶$	is labeled ‘anomalous’ if it is 154 
‘anomalous’ in at least one class 𝑡 ∈ 𝑇%. For TEST1, we argue that the approach is conservative, 155 
because comparing a single sequence against the average behavior of foreshock sequences may 156 
lead to wrongly label more actual normal foreshock sequences as ‘anomalous’ (i.e., false 157 
positives) than wrongly labeling anomalous foreshock sequences as ‘normal’ (i.e., false 158 
negatives). To investigate this aspect, we perform an alternative analysis by building two eCDFs 159 
of 𝑁% (i.e., without normalizing by 𝑁$): one for the real catalog (eCDFreal) and one for all 160 
synthetic catalogs combined (eCDFETAS). If the 99th percentile of eCDFreal is larger than the 161 
corresponding percentile of eCDFETAS in a certain class, we label each foreshock sequence as 162 
‘anomalous’ whose 𝑁% is above the 99th percentile of eCDFETAS. 163 
To investigate the physical interpretation of possible anomalous foreshock sequences in the real 164 
catalog, we analyze their spatial distribution. Specifically, taking inspiration from Zaliapin and 165 
Ben-Zion (2013), we create a map by interpolating heat flow measurements (see Data 166 
Availability Statement) with a radial smoothing approach (𝑟 = 20	km) to acknowledge areas 167 
without data. For each foreshock sequence, we extract the interpolated heat flow value closest to 168 
the mainshock location if it is within r, otherwise we discard the sequence. Then we test if the 169 
distribution of extracted heat flow values is significantly different for normal and anomalous 170 
foreshock sequences. If pre-slip is responsible for anomalous foreshock sequences, we should 171 
not find any difference, i.e., a spatial pattern. We employ two statistical tests: the two-sample 172 
Kolmogorov-Smirnov test (null hypothesis: the two distributions have the same parent 173 
distribution), and the paired Wilcoxon test (null hypothesis: the two distributions have the same 174 
median). In essence, the Kolmogorov-Smirnov test is sensitive to any kind of difference between 175 
both distributions, whereas the Wilcoxon test is sensitive to one distribution having higher values 176 
than the other. 177 

3 Results 178 

3.1 Testing for anomalous foreshock activity  179 
Figure 1 shows the results of TEST1 using NN to identify mainshocks and their foreshocks; the 180 
results using STW are reported in supporting information Figure S3. Each subplot shows a 181 
comparison of the eCDF based on synthetic catalogs with the observed value from the real 182 
catalog for each class in 𝐶$ and 𝑇%. As shown in Figure 1 and Figure S3, TEST1 rejects 𝐻!

('), 183 
i.e., identifies anomalous foreshock sequences, exclusively for mainshock magnitudes 𝑚$ <184 
5.5. Of a total of 152 foreshock sequences, we find 61 (40%) to be anomalous; with the STW 185 
method we find 143 foreshock sequences of which 34 (23%) are anomalous (all with 𝑚$ <186 
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5.5.). Using instead the alternative analysis without normalizing by 𝑁$	(Figure S4), we find 19 187 
(12.5%) to be anomalous, which suggests that TEST1 overestimated the number of anomalies 188 
due to using averages, as anticipated in Data and Methods. 189 

Figure 2 shows the results of TEST2 for each class in 𝐶$ and 𝑇% using the NN method; the 190 
results using the STW method are reported in supporting information Figure S5. Most PMF 191 
values of the real catalog are not anomalous because they are below the 99th percentile of 192 
synthetic PMF values. We find 21 of 152 (14%) foreshock sequences to be anomalous, most of 193 
which are again associated with 𝑚$ < 5.5 (only three have larger 𝑚$) . Using the STW method 194 
we find 10 of 143 (7%) foreshock sequences to be anomalous.  195 
For comparison, Figure 2 also reports the results obtained by applying the approach of Seif et al. 196 
(2019), which tests a similar yet different null hypothesis than TEST2. Specifically, they treat all 197 
synthetic catalogs as one single compound catalog. In this way, the PMF is normalized with a 198 
much larger number of mainshocks than a single catalog (e.g., like the real catalog); for an 199 
increasing number of synthetic catalogs, the PMF decreases progressively observation (i.e., 200 
lowering the detectable minimum frequency) and moves further away from the real. In other 201 
words, our TEST2 honors the fact that a finite earthquake catalog must have a lower detectable 202 
frequency of foreshocks in the PMF; this lower frequency depends on the number of mainshocks 203 
that have foreshocks, which in turn depends on the length of the earthquake catalog (the lowest 204 
frequency is 1 out of the number of mainshocks that have foreshocks). In addition, the approach 205 
of Seif et al. (2019) normalizes the PMF by the total number of mainshocks that have foreshocks 206 
(𝑁$, as we do in TEST2) and no foreshocks, which further reduces the PMF by another 0.5–1 207 
order of magnitude depending on 𝑐 ∈ 𝐶$. 208 
We repeated TEST1 and TEST2 at a 0.05 significance level (i.e., 95th percentile), which was 209 
originally used by Seif et al. (2019), see supporting information (Text S3 and Figures S6 and 210 
S7).  211 

3.2 Correlating foreshock sequences with the heat flow 212 
To investigate the physical cause of anomalous foreshock sequences we inspect the correlation 213 
of their locations with the local heat flow. We choose this property because previous papers 214 
suggested that the heat flow relates to statistical properties of seismic sequences (e.g., Enescu et 215 
al., 2009, Chen & Shearer, 2016; Ross et al., 2021; Zaliapin & Ben-Zion, 2013).  216 
Figures 3a and 4a overlay the locations of normal and anomalous foreshock sequences identified 217 
by TEST1 and TEST2, respectively, on a heat flow map. Figures 3b and 4b show the 218 
corresponding eCDFs of the interpolated heat flow observed at the locations of normal and 219 
anomalous foreshock sequences. In both cases, anomalous foreshock sequences tend to occur 220 
more frequently at locations of higher heat flow than normal sequences. This trend is confirmed 221 
by the p-values of the two-sample Kolmogorov-Smirnov and paired Wilcoxon tests (see 222 
annotations in Figures 3b and 4b), which are below 0.05, indicating that the two samples come 223 
from different parent distributions with different means. Figures 3 and 4 are based on the NN 224 
method to identify mainshocks and their foreshocks; the results based on the STW method 225 
confirm our findings (see supporting information Figures S8 and S9), as do the results based on a 226 
0.05 significance level (Figures S10 and S11). Moreover, TEST1-based results are stable even if 227 
we use the alternative procedure to identify anomalous foreshock sequences using eCDFs 228 
without normalizing by 𝑁$ (see Figure S12).  229 

ESSOAr | https://doi.org/10.1002/essoar.10509908.2 | CC_BY_4.0 | First posted online: Wed, 23 Mar 2022 09:54:48 | This content has not been peer reviewed. 



manuscript submitted to Geophysical Research Letters 

We verify the stability of our results using foreshock anomalies identified by Petrillo and 230 
Lippiello (2021). The authors provided us locations of their identified normal and anomalous 231 
foreshock sequences (G. Petrillo, pers. comm., 2022), letting us apply our analysis on a dataset 232 
that is completely independent from our assumptions and modeling choices. The results shown in 233 
Figure S13 confirm our findings of a preferential occurrence of foreshock anomalies in zones of 234 
high heat flow.  235 

Finally, we add a word of caution on the interpretation of the results, that is, the spatial coverage 236 
of heat flow data compared to the earthquake activity is rather incomplete in northern Mexico. 237 
For instance, several anomalous foreshock sequences occur in this area but cannot be included in 238 
the heat flow analysis due to the lack of heat flow measurements. In addition, the available heat 239 
flow measurements in northern Mexico are not consistent with the Geothermal map of North 240 
America (Blackwell & Richards, 2004), which indicates a generally high heat flow (> 100 241 
µW/m2) in this area along the San Andreas Fault. 242 

4 Discussion & Conclusion 243 
We have found that foreshocks have the same characteristics of general seismicity as expected 244 
by ETAS, except for some cases. Our finding is in general agreement with previous studies of 245 
foreshock activity, all of which found (with some important differences not discussed here) 246 
higher foreshock activity than expected (Chen & Shearer, 2016; Moutote et al., 2021; Petrillo & 247 
Lippiello, 2021; Seif et al., 2019). However, our results additionally show that foreshock 248 
anomalies are mostly associated with mainshock magnitudes below 5.5—independently from the 249 
two tests and the two procedures to identify mainshocks and their foreshocks. Moreover, these 250 
anomalies are located preferentially (and statistically significant) in zones of high heat flow. The 251 
combination of these two findings suggests that sequences with anomalous foreshock activity 252 
behave more like seismic swarms. In fact, independent studies (e.g., Enescu et al., 2009, Chen & 253 
Shearer, 2016; Ross et al., 2021; Zaliapin & Ben-Zion, 2013) have shown that swarm-like 254 
activity is common in those areas where we have found anomalous foreshock sequences.  255 

Our results do not allow us to further elucidate why foreshock anomalies correlate with high heat 256 
flow. The anomalies may be driven by specific physical mechanisms (e.g., actual seismic 257 
swarms mostly driven by fluids) or still relate to a cascade model that is not spatially uniform. 258 
The latter may be better described by an ETAS model with spatially varying triggering 259 
parameters. In fact, Enescu et al. (2009) and Nandan et al. (2017) show that some parameters of 260 
a spatially varying ETAS model (which mostly depend on the more abundant aftershocks) 261 
correlate with the heat flow in southern California. Such a more elaborated clustering model 262 
implies more active foreshock sequences where the heat flow is high, which agrees with our 263 
empirical findings based on the analysis of (less abundant) foreshocks. 264 
Conversely, foreshock sequences located in zones of lower heat flow predominantly behave as 265 
expected, i.e., in agreement with the null hypothesis given by the ETAS model. Since it is 266 
reasonable to assume that a pre-slip model should not be severely affected by heat flow, our 267 
results do not indicate the pre-slip model as a major candidate to explain the anomalous 268 
foreshock behavior in southern California. It goes without saying that our results do not prove 269 
the cascade model as the truth, but that they do not bring any evidence against it and in favor of 270 
the pre-slip model.  271 
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Our results also highlight the importance of analyzing seismic sequences in zones of high heat 272 
flow in more detail, especially to understand the physical reasons of anomalous foreshock 273 
sequences: Are they related to seismic swarms with an implicit limitation to the mainshock 274 
magnitude? Or are they related to different clustering processes than those driving tectonic 275 
sequences? The difference is crucial, in particular regarding the forecasting of large earthquakes.  276 
Our findings raise an urgent need to find (quasi-)real-time methods to discriminate swarm-like 277 
from ETAS-like sequences. Such a discrimination method could lead to significant 278 
improvements in earthquake forecasting, because being able to identify a swarm-like sequence as 279 
such could markedly reduce the forecast probability for a large earthquake. We note that an 280 
interesting attempt in this direction has been made by Zaliapin and Ben-Zion (2013), who found 281 
that swarm-like sequences have a different topologic tree structure (i.e., an internal clustering 282 
hierarchy, which connects background and triggered earthquakes). Unfortunately, this method 283 
can currently only be used retrospectively, limiting its applicability in earthquake forecasting. 284 
We envision other possible parameterizations of the topologic tree structure that may facilitate its 285 
use from a forecasting perspective. 286 
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 308 
Figure 1. Results of TEST1 for various classes of the mainshock magnitude 𝑚$ (rows) and 309 
thresholds for the foreshock magnitude 𝑚% (columns). Each subplot displays the number of 310 
normalized foreshocks 𝑁9F for the real catalog (vertical lines; red if anomalous, black otherwise) 311 
and the empirical Cumulative Distribution Functions (eCDFs, dashed curves) with its 99th 312 
percentile (dashed vertical lines) for 1000 synthetic catalogs. Each subplot also reports the 313 
number of anomalous foreshock sequences, 𝑁3%4, the p-value for TEST1, and the number of 314 
mainshocks, 𝑁$. The results are based on the NN method; supporting information Figure S3 315 
shows results based on the STW method. Note that each subplot uses a different 𝑁%-axis range to 316 
account for the varying data range. 317 
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 318 
Figure 2. Results of TEST2 showing probability mass functions (PMFs) of the number of 319 
foreshocks 𝑁% for various classes of 𝑚$ (rows) and 𝑚% (columns). The PMFs are shown for (i) 320 
the real catalog (triangles), (ii) all synthetic catalogs (small gray dots as swarm distributions) 321 
with their 99th percentile (gray horizontal bars), and (iii) when considering all synthetic catalogs 322 
as a single compound catalog (blue open circles, using the approach of Seif et al., 2019). 323 
Triangles become red when they are located above the 99th percentile of (ii). The results are 324 
based on the NN method to identify mainshocks and their foreshocks; supporting information 325 
Figure S5 shows results based on the STW method. Note that each subplot uses a different 𝑁%-326 
axis range. 327 
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 328 
Figure 3. Correlating foreshock sequences with the heat flow. (a) Locations of normal (empty 329 
circles) and anomalous foreshock sequences (filled circles) identified with TEST1 overlayed on a 330 
heat flow map. The circles sizes scales with 𝑚$ (see legend). The interpolated heat flow map is 331 
based on sampled heat flow measurements (small gray dots, see Data and Methods section); (b) 332 
eCDFs of heat flow values at locations of normal (dashed curve) and anomalous foreshock 333 
sequences (solid curve); both eCDFs are compared using two statistical tests (see annotation with 334 
corresponding p-values). The results are based on the NN method; supporting information Figure 335 
S8 shows results based on the STW method. 336 

 337 
Figure 4. Like Figure 3 but with foreshock sequences labeled as ‘anomalous’ or ‘normal’ using 338 
TEST2. Supporting information Figure S9 shows results based on the STW method. 339 
  340 
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Abstract Recent developments in earthquake forecasting models have demonstrated the need for a
robust method for identifying which model components are most beneficial to understanding spatial
patterns of seismicity. Borrowing from ecology, we use Log-Gaussian Cox process models to describe the
spatially varying intensity of earthquake locations. These models are constructed using elements which
may influence earthquake locations, including the underlying fault map and past seismicity models, and a
random field to account for any excess spatial variation that cannot be explained by deterministic model
components. Comparing the alternative models allows the assessment of the performance of models of
varying complexity composed of different components and therefore identifies which elements are most
useful for describing the distribution of earthquake locations. We demonstrate the effectiveness of this
approach using synthetic data and by making use of the earthquake and fault information available for
California, including an application to the 2019 Ridgecrest sequence. We show the flexibility of this
modeling approach and how it might be applied in areas where we do not have the same abundance of
detailed information. We find results consistent with existing literature on the performance of past
seismicity models that slip rates are beneficial for describing the spatial locations of larger magnitude
events and that strain rate maps can constrain the spatial limits of seismicity in California. We also
demonstrate that maps of distance to the nearest fault can benefit spatial models of seismicity, even those
that also include the primary fault geometry used to construct them.

Plain Language Summary Recently, many statistical models for earthquake occurrence have
been developed with the aim of improving earthquake forecasting. Several different underlying factors
might control the location of earthquakes, but testing the significance of each of these factors with
traditional approaches has not been straightforward and has restricted how well we can combine different
successful model elements. We present a new approach using a point process model to map the spatial
intensity of events. This method allows us to combine maps of factors which might affect the location of
earthquakes with a random element that accounts for other spatial variation. This allows us to rapidly
compare models with different components to see which are most helpful for describing the observed
locations. We demonstrate this approach using synthetic data and real data from California as a whole and
the 2019 Ridgecrest sequence in particular. Slip rates are found to be beneficial for explaining the spatial
distribution of large magnitude events, and strain rates are found useful for constraining spatial limits of
observed seismicity. Constructing a fault distance map can also improve models where many events cannot
be directly linked to an individual fault.

1. Introduction
For a variety of reasons, including the lack of clear, reliable precursors and the inherent nonlinearity and
complexity of the underlying process, the deterministic prediction of individual earthquakes remains an elu-
sive goal (Jordan et al., 2011). Instead, the focus has shifted to forecasting the probability of occurrence of a
population of events in space and time, in an attempt to determine the degree of predictability of earthquakes
(Field, 2007; Jordan & Jones, 2010; Vere-Jones, 1995). In order to make reliable forecasts, it is necessary
to understand as much as possible about the spatiotemporal behavior of earthquakes and the underlying
processes that drive them.
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Statistical point process models have been used to describe earthquake occurrence for many years
(Ogata, 1998; Vere-Jones, 1970; Vere-Jones & Davies, 1966). The aim of these models is to describe the
occurrence of earthquakes as a series of points in time, space, or both, with an appropriate “mark” such
as earthquake magnitude. With the creation of the Epidemic-Type Aftershock Sequence (ETAS) model and
development of robust methods to estimate parameter values (Ogata, 1988, 2011; Ogata & Zhuang, 2006;
Veen & Schoenberg, 2008), point process models have been applied extensively in statistical seismology.
For example, the ETAS model is widely used for catalog simulation and model testing (Helmstetter, 2003;
Helmstetter & Sornette, 2002a, 2002b, 2003, Helmstetter et al., 2005; Nandan et al., 2017; Seif et al., 2017),
as well as being used in aftershock forecasting models (Marzocchi et al., 2014; Rhoades et al., 2018; Taroni
et al., 2018).

The uniform California earthquake rupture forecast (UCERF) is a fault-based model for forecasting seis-
micity in the state of California. The most recent implementations of this model (UCERF3) include
a time-independent model that assumes that the process is statistically stationary and memoryless
(Field et al., 2014), a long-term time-dependent model incorporating memory of large past events
(Field et al., 2015), and a short-term time-dependent forecast model (Field et al., 2017) which makes use
of the ETAS model to forecast aftershock activity. These models are used in parallel in hazard assessment
for the state of California for different applications and consist of four main components: a fault model for
the physical locations and architecture of known faults, slip rate models that estimate the slip and creep
estimates for each individual fault from geodetic and geological data, event rate models which describe the
long-term rate of earthquakes throughout the area, and a probability model that describes the likelihood of
an earthquake occurring within a specified time period. The time-dependent models also include long-term
renewal and short-term clustering processes, while the time-independent model is applied to probabilistic
seismic hazard assessment (PSHA). Typically, different model configurations are selected by use of a logic
tree, where each branch is given a weighting determined by expert judgement through workshops. This
approach allows the construction of models containing different information which will then be included
in a full rupture forecast model and allows the inclusion of uncertainties in model parameters. In the case of
UCERF3, this results in a logic tree with a total of 5,760 branches, requiring the use of high-power computing
facilities to produce the resulting forecast models.

The idea of hybrid forecasting models is not a new one. Marzocchi et al. (2012) suggest a Bayesian method for
combining models and ranking them based on their respective Bayes factor. Rhoades et al. (2014) proposed
multiplicative combinations of models from the RELM project to improve the forecasting ability of models
compared to a smoothed seismicity model. Rhoades et al. (2015) expanded on this approach and applied it to
events in New Zealand, in which they included a covariate that accounted for the distance to a mapped fault.
In each of these examples there is a requirement for individual forecasts to be developed before combination
and for the user to determine a weight for the individual model components, an issue which is highlighted
particularly in Marzocchi et al. (2012). Nevertheless, there remains a significant component of epistemic
uncertainty due to lack of data, notably on the occurrence rates of large magnitude events.

In this paper we address the question: How can we be sure which components of the model are most useful in
describing the seismicity in a data-driven approach, that is, without recourse to expert judgement? Seismol-
ogy currently lacks both a straightforward method for the objective combination of useful earthquake data
and a robust framework for the rapid evaluation of seismicity models with a full description of the associated
uncertainty. Here we present a possible solution—the application of integrated nested Laplace approxima-
tions (INLA) for the spatial modeling of earthquake data by modeling seismicity as a log-Gaussian Cox
process (LGCP). Once the most useful model components are identified, these can be applied in a straightfor-
ward way to prospective forecasting models. We begin by outlining the theory underlying the INLA method
and justifying its use in a seismological context. We then demonstrate the ease with which models describ-
ing the longer-term spatial distribution of seismicity can be constructed and compared using synthetic data
and data used in the UCERF3 model. We highlight how INLA can be used to straightforwardly assess the
contribution of different components of a model, how well each component can describe the observed spa-
tial distribution of events, and how the inclusion of a random field in the analysis can help us identify what
our model is lacking.
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2. Theory
The earliest point process models for earthquakes were discussed by Vere-Jones (1970), who lamented that
the mathematical methods required to evaluate these models did not exist at the time. Early models by
Ogata (1988) demonstrated how point processes could be used for the temporal modeling of earthquake
sequences, by combining the Poisson rate of independent or “background” earthquakes and the Omori law
for dependent aftershock events to account for temporal clustering. Though the ETAS model has seen many
improvements over the years, the question of the most suitable spatial model for a spatiotemporal ETAS
model still remains. An isotropic inverse power law distribution is often used (Ogata & Zhuang, 2006; Werner
et al., 2011) though more general spatial kernels were proposed by Ogata (1998) and sophisticated alterna-
tives that include fault data and Coulomb stress changes have also been suggested (Bach & Hainzl, 2012). By
stacking global data, Huc and Main (2003) showed that an inverse power law with an exponential tail was
the most appropriate global average, implying a correlation length for triggering similar to the seismogenic
thickness. An alternative point process approach would be to consider the spatial distribution of events first
and then extend such a model to be fully spatiotemporal. Given that the spatial intensity of earthquake occur-
rence is known to vary and to be associated with underlying subsurface conditions which cannot be directly
observed, a method that allows a quantitative description of the stochastic nature of earthquakes in space is
required. Here we propose to solve this problem by adopting a LGCP which models a spatially varying inten-
sity process as a function of deterministic and stochastic effects. Such models can be rapidly constructed and
evaluated using INLA. Below, we outline the theory behind LGCPs and the INLA method for fitting them.
INLA is a computationally efficient way to construct models, so we can construct models with different
combinations of potentially useful components and compare their performance with appropriate methods.

2.1. LGCPs and INLA

LGCP are a popular class of model for spatial variability in ecology, as they allow some observed spatial pat-
tern to be described by some deterministic location effects and a “random field” component which describes
any remaining spatial variability. Observations can then be modeled with a spatially varying intensity func-
tion that describes a continuous stochastic process as a function of combined stochastic and deterministic
effects (Diggle et al., 2013). Where current point process models for seismicity began by describing the
temporal distribution of earthquakes, LGCPs aim to model the spatial variation of events using an inhomo-
geneous Poisson process, which can be extended to a fully spatiotemporal marked point process. In the case
of earthquake data, our “deterministic” model components will inevitably still contain uncertainty and can
range from observed data such as fault maps to spatial data models, such as smoothed seismicity or strain
rate models.

The INLA approach is a computationally efficient alternative to Markov chain Monte Carlo (MCMC)
approaches to Bayesian model fitting. The INLA method is incredibly flexible and has been widely applied
to point process data sets in ecology (Dutra Silva et al., 2017; Illian et al., 2012; Sadykova et al., 2017; Yuan
et al., 2017) and to some natural hazard examples including tornado (Gómez-Rubio et al., 2015), wildfire
(Díaz-Avalos et al., 2016), and landslide modeling (Lombardo et al., 2018).
2.1.1. LGCP
Sometimes called the doubly stochastic Poisson process, the Cox process (Cox, 1955) is a generalization of
the Poisson process where the process intensity 𝜆 is itself stochastic in nature. Vere-Jones (1970) proposed
using the Cox process to describe the spatial distribution of earthquakes, if clustering were removed. A LGCP
is a special case of the Cox process where the rate of events is determined by some underlying random field,
which is assumed to be Gaussian in nature and to vary spatially. The construction of these models allows
the user to specify underlying factors that might describe the observed spatial distribution, for example, how
underlying soil characteristics might affect the location of a certain tree species (Illian et al., 2012). Multiple
underlying factors can be included in the spatially varying intensity function to account for the observed
spatial distribution of events. A random field can then also be added, which describes the remaining spatial
structure which cannot be captured by more deterministic effects.

For a homogeneous Poisson process with intensity 𝜆, the intensity can be modeled as

𝜆 = e𝛽0 (1)

for any positive intensity such that 𝛽0 is an intercept term representing the mean of the intensity. For an
inhomogeneous Poisson process with spatially varying intensity, we can also add a Gaussian random field
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𝜁(s) which accounts for spatial correlation in the observed points. This gives us

𝜆(s) = e𝛽0+𝜁(s) (2)

where we can consider the exponentiated term a linear predictor such that 𝜂 = 𝛽0+𝜁 (s). Again, 𝛽0 represents
a mean intensity, but the random field 𝜁(s) captures the fluctuations about 𝛽0. A log Gaussian Cox process
is then a model where the point intensity 𝜆 can be described as follows:

𝜆(s) = e𝜂(s) (3)

The observed spatially varying intensity can also be modeled as

log(𝜆(s)) = 𝛽0 +
M∑

m=1
𝛽mxm(s) + 𝜁 (s) (4)

where 𝛽m are linear covariates that may influence the spatially varying intensity of the points. These explain
the observed spatial variation in the intensity of the process, with the spatially varying Gaussian random
field 𝜁(s) accounting for the fluctuations in intensity that the deterministic covariates cannot fully explain.
More complicated, nonlinear functions can also be included in the linear predictor. In this way, 𝜁(s) describes
variation of point intensity that is not accounted for by other model components and therefore highlights
the spatial areas in which the model components are not sufficient to describe observed spatial patterns of
intensity.
2.1.2. INLA
To fit an LGCP model in a Bayesian manner, it is necessary to estimate the posterior distributions
of the model parameters 𝜽. Traditionally, MCMC methods may have been used; however, these are
time-consuming to fit and prohibit the use of complex models. Where MCMC takes many samples from
a posterior distribution, the INLA method (Rue et al., 2009) makes use of a series of approximations to
estimate posterior distributions. Without the need for many iterations and the concerns of convergence asso-
ciated with MCMC, INLA is a computationally efficient alternative for Bayesian analysis for models such as
the LGCP where a latent Gaussian component is assumed. INLA is less generally applicable than MCMC
because of the requirement for the latent Gaussian structure. Taylor and Diggle (2014) argue that an MCMC
approach allows for a more flexible model and better analysis of joint posteriors than INLA. Teng et al.
(2017) discuss different Bayesian approaches to the analysis of LGCP models, including different implemen-
tations of the INLA model, including the approach with stochastic partial differential equations (SPDEs)
that we use in this paper. In this paper we have chosen to use INLA due to the speed and ease of application
facilitated by recent software developments, allowing rapid model configuration and comparisons.

The basic idea is described in Rue et al. (2009). Some observed data xi can be described by a parameter
vector 𝜽, and each element of 𝜽 can be described by some hyperparameters 𝝍 = {𝜓i … 𝜓k} in a hierar-
chical Bayesian model. The INLA method aims to evaluate the marginal posteriors for each element of the
parameter vector 𝜽, which can be written as

p(𝜃i|x) = ∫ p(𝜃i, 𝜓|x)d𝜓 = ∫ p(𝜃i|𝜓, x)p(𝜓|x)d𝜓 (5)

and for each element of the hyperparameter vector, 𝝍 , which can be written as

p(𝜓k|x) = ∫ p(𝜓|x)d𝜓−k (6)

where d𝜓−k is all other components of 𝜓 except k.

It is necessary to calculate the joint posterior of the hyperparameters p(𝝍|x) to calculate the posterior
marginal distributions of the hyperparameters (Equation 6) and also to calculate p(𝜃i|𝝍 , x) in order to solve
Equation 5 for the posteriors of each of the parameters 𝜃i. INLA does this by using Laplace approximations,
nested because they are required for both p(𝝍|x) and p(𝜃i|𝜓 , x). INLA makes a Gaussian approximation
of p(𝜓|x) which can be written p̃(𝜓|x) and a simplified Laplace approximation using a Taylor expansion
of the approximation of p̃(𝜃i|𝜓, x). The main limitation of such an approach is the use of the Laplace
approximation, which assumes that a smooth, peaked posterior distribution can be approximated by a
Gaussian.
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The posterior marginals can then be approximated with

p(𝜃i|x) ≈ ∫ p̃(𝜃i|𝜓, x)p̃(𝜓|x)d𝜓 (7)

which can be solved numerically through a finite weighted sum. This is a suitable approximation when the
posterior marginals are roughly Gaussian in nature but can also accommodate less Gaussian posteriors, as
discussed at length in Rue et al. (2009) and Rue et al. (2017).
2.1.3. Gaussian Fields and Matérn Correlation
Gaussian fields are a useful mathematical concept that can be used to model underlying or latent processes.
In the LGCP framework outlined here, a Gaussian field 𝜁 is used to model spatial variation not accounted
for by the deterministic model components, 𝛽m, as in Equation 4. In this way, the Gaussian random field
models the spatial structure by accounting for any spatial correlation between events. The combination of
the random field and deterministic covariates models the intensity of the LGCP. We define the Gaussian
field 𝜁 as

𝜁 (s) ∼ GaussianField(0,Σ) (8)

where the mean = 0 and the covariance is Σ. Calculating the covariance can be tricky, so instead of calcu-
lating all the values independently, a standard correlation function can be used to describe the correlation
between points, and the area over which such correlation extends. A Matérn correlation function can be
used to define the covariance such that

Σ = CovM = 𝜎2CorrM (9)

where 𝜎2 is some variance parameter and CovM and CorrM are the Matérn covariance and correlation
respectively. The Matérn correlation is specified as

CorrM = 21−𝜈

Γ(𝜈)
(𝜅||si − s𝑗 ||)𝜈K𝜈(𝜅||si − s𝑗 ||) (10)

where si and sj are the spatial positions of observations i and j and ||si − s𝑗 || describes the Euclidean distance
between these points. K𝜈 is a Bessel function, and the correlation has parameters 𝜅 and 𝜈. Assuming that
𝜈 = 1, the equation simplifies to have dependence only on 𝜅 and the distance between points. The Matérn
correlation function describes the distances over which points within the model have some correlation, such
that if the parameter 𝜅 is smaller, there is more long-range spatial dependency.

With this approach, the parameters required to describe the underlying Gaussian random field are simply 𝜎2

and 𝜅. This will still be time-consuming to compute, unless we make the assumption that variation within
the random field will only be on a local scale. If we can make the assumption that the underlying field is
Markovian, such that only neighboring points will have nonzero correlation, the correlation matrix becomes
sparse. Such an assumption approximates the random field with a Gaussian Markov random field (GMRF).
Lindgren et al. (2011) provided an explicit link between Gaussian random fields and GMRFs that allows
Gaussian random fields with Matérn covariance to be approximated by GMRFs even in cases where the spa-
tial correlation structure is long range. The Matérn correlation structure is an extremely popular and flexible
correlation structure used widely in a variety of spatial modeling applications (Guttorp & Gneiting, 2006).
2.1.4. SPDE and Mesh Construction
The INLA approach can be used with continuous domain random field models as described by Lindgren
et al. (2011) and Simpson et al. (2012), leading to the application of the method to a range of complex spatial
and spatiotemporal models (Blangiardo & Cameletti, 2013; Gómez-Rubio et al., 2015; Lindgren & Rue, 2015).
Essentially, this requires defining a mesh on which to construct the point process model, such that the ran-
dom field can be evaluated at each mesh vertex. Lindgren et al. (2011) detailed how random field models can
be described by solutions of sets of SPDEs. The parameters of the SPDEs are directly linked to the parame-
ters of the Matérn correlation, so solving the SPDEs gives the required parameters for the Matérn covariance
of the underlying GMRF. The SPDEs can be solved using a finite element approach, where the area can be
represented by a mesh, with basis function representations used to calculate the value at each mesh ver-
tex. Thus, the SPDE approach allows the mapping of a random field from discrete points to a continuous
field by the use of a correlation matrix that describes how the data points interact, or specifically the range
of interaction of the points, which will be reflected in the resulting spatial intensity. This therefore allows
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us to consider a spatially continuous field rather than discrete point information, which in an earthquake
context allows us to infer something about areas which have not experienced earthquakes within any point
data set and not just the areas which have. A continuous field model also allows us to see where the model
performs well in terms of the deterministic covariates describing the intensity, compared to areas where the
intensity is mostly described by the random field component. Simpson et al. (2015) proved that the SPDE
method converged well for LGCPs and with minimal error in the posterior distribution due to the method.

The mesh for the SPDE calculations is constructed using a restrained refined Delauney triangulation of a
point data set using the inla.mesh.2d function. The mesh boundaries are determined by the extent of the
point locations, with a coarser mesh extending slightly outside of this area to reduce edge effects. A more
complex mesh may provide greater resolution but will require more computational power, so a compromise
is required which will provide reasonable resolution at an acceptable cost. The mesh can be constructed from
the point locations themselves, but this results in a finer mesh in areas of clustering and a coarser mesh in
areas with few events, when the spatial structure of most interest is likely to be somewhere in between these
two extremes. As such we have chosen to specify the mesh domain as the spatial extent of the points rather
than construct the mesh on the points themselves. This also makes models on different time periods more
comparable where the point locations are likely to be different. A further consideration when constructing
the mesh is the range of the Matérn correlation describing the random field. The correlation range in the
remaining spatial structure must be greater than the length of the mesh edges so that the resulting intensities
are reliable.

We construct and run the following models using the r package inlabru (Bachl et al., 2019) to fit LGCP
models to the observed points using INLA. The inlabru package provides a user-friendly approach for using
INLA for point process models, building on the R-INLA package (Lindgren et al., 2011; Martins et al., 2013;
Rue et al., 2009). inlabru makes use of the sp package (Bivand et al., 2013; Pebesma & Bivand, 2005), using
spatial data frames to handle data, and R packages raster (Hijmans, 2019), rgdal (Bivand et al., 2019), and
rgeos (Bivand & Rundel, 2019) are also used for data wrangling. All maps in this paper are constructed
with the use of ggmap (Kahle & Wickham, 2013) and tmap (Tennekes, 2018), with color schemes from
RColorBrewer (Neuwirth, 2014). The process for fitting LGCP models in inlabru is straightforward. A model
is constructed for the random field component, based on a user-defined mesh. An equation describing the
model components is defined, and an LGCP is fitted to this model. The LGCP fits can then be compared using
DIC or by predicting the intensities that would be returned by the LGCP model. The predicted intensities
can be a combination of all model components or include only some of the modelers choosing. In this way,
the effect of adding different model components can be compared by studying changes to the predicted
intensity of the model as a whole and also by looking at the random field alone, which will identify spatial
variability that the deterministic components cannot explain.

2.2. Model Comparison and DIC

The deviance information criterion, or DIC, was developed by Spiegelhalter et al. (2002) as an alternative to
the commonly used AIC. DIC is a measure that can be used to compare different models with varying num-
bers of parameters, designed as analogous to AIC for use with hierarchical models reflecting the trade-off
between the “goodness of fit” and model “complexity.” The DIC is the expected deviance, penalized by the
effective number of model parameters, which is a measure of the difference in posterior mean deviance and
the deviance of the posterior means of the individual parameters. This penalizes more complex models sim-
ilar to AIC, therefore preferring the simplest models that can explain the resulting data. DIC is designed
specifically for hierarchical models where the model is structured in such a way that there is structural
dependence between parameters, as is the case when we include parameter priors. The DIC is calculated
within the INLA and inlabru software (and similarly within other software used for Bayesian hierarchical
modeling such as BUGS), making it a popular choice for model comparison in these contexts (Spiegelhalter
et al., 2014).

In this case the DIC is calculated at the posterior mean of the latent field and the posterior mode of the
hyperparameters. The deviance D is defined by

D(𝜃) = −2
∑

i
log p(xi|𝜃) (11)
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The effective number of parameters pD is calculated using the trace of the prior precision matrix Q multiplied
by the posterior covariance matrix Q*

pD = n − tr{Q(𝜃)Q∗(𝜃)−1} (12)

where n is the number of observations and the total model DIC is then

DIC = D(𝜃) − pD (13)

Rue et al. (2009) describe the full details of how DIC is calculated within the INLA software.

The Collaboratory for the study of earthquake predictability (CSEP, e.g. Michael & Werner, 2018) aims to
improve earthquake forecasting by testing earthquake forecasts in real time, with the future aim of extend-
ing this approach to full hazard models (Schorlemmer et al., 2018). CSEP tests earthquake forecasts using a
variety of different tests, ranging from simple tests of the number of forecast events (the N-test) to compar-
isons of forecast likelihoods (L-test) and residual comparisons, with different testing centers using different
testing approaches for the models they are assessing. The DIC is also a likelihood-based model assessment
tool, making it similar in some ways to the CSEP L-test, except in this case we are applying the tests to spatial
data patterns rather than prospective or pseudo-prospective data at this time. We also compare the num-
ber of events expected by each of our constructed models—the abundance of points obtained by integrating
over our mesh intensity models—which is somewhat analogous to the N-test used by CSEP. Nevertheless,
the optimization presented here is a necessary but not sufficient criterion to developing a true prospective
forecasting model. In future work we will develop pseudo-prospective and ultimately prospective forecast
model tests to allow comparison with competing models in the CSEP framework.

Throughout this work, we use DIC as a tool for model comparison as a first test and highlight other methods
of comparing models and model outputs. Our aim is not to discriminate between models based solely on
their DIC, but the DIC and number of events predicted by the LGCP model make a useful first pass for
testing and comparing models.

3. Data Types
A huge benefit of the inlabru approach is in the ability to combine different data types within a model.
The earthquakes themselves are described as points, and the deterministic components of the model can be
included as lines, polygons, maps, or raster images with discrete or continuous variables. Constructed LGCP
models can include any combination of these components, and the output of one model can be straightfor-
wardly included in the next. Continuous variables can be included with the use of a function that returns the
value of the variable at a given point in space. Categorical information can be added for data which takes the
form of discrete layers. In the inlabru terminology these are termed “factor” covariates, and we demonstrate
their use in constructing a binary “fault factor” below. We begin by outlining the different data sets that can
be included in an inlabru model with application to several data sets for California. Further information on
each of the data types is included in the supporting information.

3.1. Earthquake Catalog: Spatiotemporal Point Data Set

We make use of various subsections of the UCERF3 catalog which consists of events above a fixed magnitude
threshold. An LGCP model aims to model spatially varying intensity. The simplest possible LGCP model
is one where we assume no known underlying spatial structure such that the intensity is a function of a
Gaussian random field only. The smoothed seismicity model in Figure 1 is constructed in such a way, using
a Matérn covariance for the random field. We see that the intensity model is behaving as we would expect,
with high intensity in areas with a greater number of events.

3.2. Fault Maps: Polygon Data Set

Given that we know that the spatial distribution of observed earthquakes is related to underlying fault sys-
tems, we can include fault polygons in the model to see how well the fault locations account for the spatial
distribution of events. The polygons are buffered as in the UCERF3 model. This is also the basis for our fault
distance map which simply returns the distance to the nearest map fault for any point within the area of
interest.
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Figure 1. Input model components used within this work. Slip rates and fault geometry from UCERF3, Matérn smoothed seismicity created from UCERF3
M2.5+ data set, distance to nearest fault calculated from UCERF3 geometry. Strain rates from GEM strain rate model, where we have used the log10 of these
values. Qfault geometry from the USGS Quaternary fault model, cropped around the study area.

Alternatively, we consider two further covariates related to fault geometry. Since a significant number of
events within the catalog do not fall within the fault polygons, we can construct a fault distance map which
shows the distance from the nearest fault. As an alternative to the UCERF3 fault geometry, we also make
use of the USGS Quaternary faults model (https://earthquake.usgs.gov/hazards/qfaults/background.php),
which we shall refer to as “QFaults.” Figure 1 shows the different inputs for the models in this paper, includ-
ing the two different fault geometries, the fault distance model and the other spatial components described
below.

3.3. Slip Rate Data: Spatial Covariate or Fault Mark

There are four possible slip rate models considered within the UCERF3 logic tree. To work with these, we
can construct either factor or continuous maps of slip rates for the different fault polygons, where a factor
map requires discrete levels of data. In this paper, we use continuous slip rate values for each individual
fault, such that the log10 slip rate is returned for any given point. Off-fault, the slip rate will be zero, so that
we have essentially attached a value to each fault polygon only. Within the slip rate models, the value of the
slip rate at any given point will be returned instead of the binary classification used to identify if a fault is
present. The slip rates for the NeoKinema model used throughout this work are shown in Figure 1.

3.4. Past Seismicity: Continuous Spatial Covariate

We use a subset of the UCERF3 data to construct a Matérn-smoothed past seismicity model, by fitting an
LGCP model to the point data alone and predicting the model intensity for events that occurred before our
time period of interest. This allows us to use the observed past seismicity as a spatial covariate in future
models, where we have smoothed the past seismicity by assuming that the intensity is a function of a random
field only. We can therefore construct a past seismicity map using any subset of the data such that the past
seismicity does not include any events in the model itself. A past seismicity model for all M2.5+ created
using Matérn smoothing is shown in Figure 1.
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Figure 2. Inversion of two synthetic data sets: event locations randomly sampled from the full fault polygon set
(a–e) and event locations sampled from a model of random field + fault slip rates according to the NeoKinema slip rate
model (f–j). The top row shows the locations of synthetic events within the fault polygons. Plot (f) shows an example of
the synthetic intensity model, where the fault polygons contribute to different intensities and the scale bar shows the
log intensity of the synthetic model. Subsequent rows show predicted intensities for models of random field only
(Row 2, b and g), models which only include fault polygons (Row 3, c and h), models with random field and fault
polygons (Row 4, d and i), and models with fault slip rates attached to the fault polygons and with included random
field (bottom row, e and j). The scale bar shows the log posterior mean intensity.
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Table 1
DIC Estimates for Models of Synthetic Data Uniformly Sampled From Fault
Polygons

Model DIC ΔDIC Abundance
Random field + fault geometry 7,178 0 498± 21
Fault geometry 7,182 4 501± 23
Random field + slip rate 7,785 607 510± 23
Random field only 7,785 607 513± 23

3.5. Strain Rate: Continuous Spatial Covariate

We make use of the GEM strain rate model (Kreemer et al., 2014) which is a global strain rate model con-
structed with the use of deforming cells in areas of high strain. Since the UCERF3 data are not global and
instead from a small area with a good catalog, the combined model of past seismicity and strain rate may
perform less well than the past seismicity alone over the short timescales considered here, especially con-
sidering the resolution of the strain rate map. Over longer timescales the strain rate map may prove more
useful by adding information. Given the abundance of model inputs we have access to in California, the
strain rates may or may not be beneficial to the model, but the INLA method allows us to compare the effect
of including a strain rate component with the addition of more detailed fault information. This allows us to
assess if the strain rate might contribute meaningfully to models for areas which lack fault slip rates. The
GEM strain rate model for California is shown in Figure 1.

4. Inversion of Synthetic Catalogs to Demonstrate the Method
To demonstrate the capabilities of the inlabru method, we construct two synthetic data sets based on the fault
geometry of UCERF3. Using the R package sp (Bivand et al., 2013; Pebesma & Bivand, 2005), we randomly
sample a chosen number of points from the fault polygons. The first model uniformly samples from within
the fault polygons, while the second weights the number of points from each fault polygon by the slip rates.
We set the number of randomly sampled events from polygons to 500, but for the slip rate weighted synthetic
data the number of events varies and is much smaller. To properly assess the models, we construct 50 random
data sets for each model. To each of these synthetic data sets, we then fit five models: a random field model,
a model with fault polygons only, a model with fault polygons and random field, a fault model with slip
rates, and a fault model with slip rates and random field.

4.1. Inversion of Events Randomly Distributed on Fault Network

Events are randomly sampled from the buffered fault polygons using the spsample function. Figure 2(a)
shows one random catalog generated in this way and the resulting intensity predictions from the four con-
structed models (b-e). Table 1 shows the resulting model DIC values and predicted number of events from
the LGCP fit as mean ± standard deviation for the data set in Figure 2. The fault geometry model signifi-
cantly improves upon the random field only model by accounting for much of the spatial distribution, but
because the distribution within the fault polygons is random, the random field + fault geometry model per-
forms the best. The model with slip rates performs better than the random field alone, as the slip rates are
related to the fault locations, but as the slip rates do not describe the observed pattern of events in space, the
DIC of the slip rate + random field model is higher than that of the fault geometry model. If we compare
the number of events predicted by each of the four models, all of the models predict a reasonable number of
events, given that 500 synthetic events have been used. The density plot in Figure 3 shows that the perfor-
mance of the different models varies significantly with different randomly sampled events. The model with
fault geometry overlaps almost entirely with the fault geometry and random field model, while the slip rate
and random field and random field only models also overlap significantly. The slip rates alone do poorly in
all 50 randomly sampled catalogs.

4.2. Inversion of Events Randomly Distributed on Fault Network Weighted by Slip Rate

For our second synthetic model, we construct a Log-Gaussian Cox model where the intensity consists of
a Gaussian random field and the fault slip rates, where the slip rate component is similar in magnitude
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Figure 3. Densities of model DIC over 50 random samples from (a) the fault polygons and (b) weighted by the
slip rates.

to the random field. This model is shown in Figure 2f. The points are sampled using a built-in inlabru
function (sample.lgcp), which samples around 160 events in each realization, but the exact number varies.
An example of the DIC results is shown in Table 2, with these results corresponding to the intensities shown
in Figure 2. The intensity range is extended by the inclusion of the slip rate model (j), making the narrower
ranges of models g–i appear almost uniform on the same scale. The number of modeled events in this sample
was 155, with all but the slip rate only model giving a reasonable estimate of the number of events. It should
not be surprising that the fault geometry model also works well, given that the slip rates are each associated
with faults.

In this case our model is constructed based on the fault slip rates and a random component, so we would
expect the fault slip rates + random field model to perform best. The densities in Figure 3 show how the
resulting DICs overlap significantly in this model, with the slip rate+ random field model outperforming the
fault model + random field model very slightly. The fault geometry and slip rate models without a random
field also perform well on some occasions, because the slip rate component of the intensity is larger than the
random field and the slip rates are only associated with faults. This results in all five models having similar
DIC values, because all five of the models go some way to explaining the observed spatial distribution of
events. In this case the small sample size may also contribute to the similar performance of each of the
models, with the low number of samples making it difficult to identify which model performs best.

In both cases, the resulting DICs show a preference for the models including the underlying processes used
to generate the data set. In the randomly sampled model, the fault geometry model and fault geometry with

Table 2
DIC Estimates for Models of Synthetic Data Sampled as a Function of Slip Rates

Model DIC ΔDIC Abundance
Random field + slip rate 3,143 0 156± 14
Random field + fault geometry 3,145 2 156± 10
Fault geometry only 3,145 2 157± 12
Random field only 3,155 12 155± 12
Slip rates only 3,191 48 135± 13
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Figure 4. Inversion of fault models for two different fault geometries: UCERF3 fault geometry 3.2 and the Quaternary
fault model (Qfaults). The top row shows the mesh used and locations of M5.5+ events (a) and the inversions for the
model which includes only the random field (RF, b). The middle row (c, d) shows the resulting intensities for models of
each of the two fault geometries (FG), where these have been included as a binary factor (events are on a fault or not).
The bottom row (e, f) shows resulting model intensities for models which include fault polygons for each geometry and
a random field. The scale bar shows the log posterior mean intensity.

random field are clearly the favored models, with overlap resulting from the random generation of events.
For the slip rate weighted points there is more variation, arising from the way in which the synthetic data
sets are constructed allowing more variation in the resulting catalogs. It is clear, however, that the inlabru
method is able to identify models which perform well and are consistent with the underlying patterns used to
create the data sets in these synthetic examples. Such consistency is a necessary (but not sufficient) criterion
in assessing forecasting power Murphy (1993). We therefore feel confident in moving forward and applying
the method to real data where the true model is not known a priori.
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5. Inversion of California Data Set
5.1. UCERF Fault Models

We first consider the fault geometries shown in Figure 1, using M5.5+ events. Figure 4 shows the resulting
intensities for five different models for real data in California: one with only a random field (top), one with
each of the fault geometries only, and one for each of the fault geometries with an included random field.
The fault polygons are included in the model as a binary factor covariate, such that the model checks if a
fault is present at any point in space but does not consider any of the other fault information at this point.
Because of this binary approach, all faults have an equal weighting within the model, so hence why the
middle row shows all faults in the same color. Including a random field in the models along with the fault
geometry (bottom) allows the model to account for events which do not occur on a fault polygon or where
there is a significantly high number of events that the fault polygons cannot explain.

The DICs for each of these models are shown in the top part of Table 3. The random field and fault geometry
maps both have a lower DIC than the random field alone, suggesting that the inclusion of the fault maps
improves the model's ability to account for the locations of the events. The fault geometries alone are not
as good for describing the spatial location of events, while including the random field allows the models to
account for extra spatial variation. We can also use the models to predict the number of events expected,
given the fitted LGCP. These are shown as abundances in Table 3, where the mean and standard deviations
are reported. There are 385 events in the UCERF3 M5.5+ catalog, so the random field and fault geometry
models predict very good numbers of events. The random field alone also predicts the correct number of
events within one standard deviation, as do the fault geometry only models. By including a random field,
we are accounting for the extra spatial variation that the fault map is missing, as a consequence of the
incompleteness of the fault map, the clustering of events, or some combination of both.

The fault polygons clearly improve the intensity model when combined with a random field, but to what
degree? To investigate this, we applied models to each of the fault geometry buffers (see Figure S2 in
supporting information), for both UCERF3 fault geometries, resulting in a total of 16 models, with half
including a random field. The DICs for these models are reported in the supporting information. Regard-
less of the buffer applied, the fault geometry and random field models perform better than the random
field alone, with the fault geometry only models all performing worse. The combined buffer polygons per-
form better than the unbuffered polygons, or the uniform 1 km buffer models, but the slightly better model
appears to be the dip-dependent buffer, as this already does a good job of describing the spatial distribution
of M5.5+ events. Fault geometry 3.2 performs better than 3.1 because it accounts for the spatial locations of
the events slightly better—240 of the 385 M5.5+ events occur within the fault polygons of FG3.2, compared
to 237 for fault geometry 3.1. To simplify our model testing, we use fault geometry 3.2 for all further fault
models, with the combined buffer applied. This allows us to use the UCERF3 slip rates, even though the
QFault geometry is the better performer according to Table 3.

We can also add slip rates for each fault according to one of four slip rate models in UCERF3. A comparison
of the four slip rate models demonstrates that the NeoKinema slip rate model performs best of the four
models in terms of DIC (see supporting information Figure S3). Using the M5.5+ data, we see that the DIC
for the slip rate + random field model is lower than that of the random field only or random field + fault
geometry models, showing that the slip rates benefit the model.

5.2. Combining Components

The true power of the inlabru approach is in the ability to construct models with different elements and
compare their performance in terms of accounting for the spatial distribution of observed earthquakes. We
construct 23 models containing combinations of the elements discussed above and shown in Figure 1, using
the NeoKinema fault slip rates and fault geometry 3.2. The past seismicity model and distance to fault maps
are created using events from 1984 to 2004 with M ≥ 2.5, while all of the above models are for earthquakes
occurring between 2004 and 2011 in the UCERF3 catalog. The DIC for these models is much higher than
when using the M5.5+ catalog due to the greater number of involved events. The mesh used for each model
is constructed based on the entire UCERF3 catalog to provide adequate spatial coverage, though the mesh
used for the past seismicity is extended slightly to avoid artifacts at the edges of the mesh in the later models.
In the following discussion, past seismicity refers to a map of Matérn-smoothed past seismicity (see Figure 1)
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Table 3
DIC Results for Combined Models With M5.5+ (Top) and M2.5+ (Bottom), Where Δ DIC Compares DIC for the “Best”
Model and δDIC Compares DIC for the Next Best Model

M Model DIC ΔDIC 𝛿DIC
5.5 Random field + Qfault geometry 5,849 0.0 0.0

Random field only 5,919 70 70
Random field + UCERF3 fault geometry 5,920 71 1
QFault geometry 6,296 447 376
UCERF3 Fault geometry 6,322 473 26

2.5 Strain rate + past seismicity + fault distance + slip rate + random field 54,961 0.0 0
Fault geometry + past seismicity + slip rate + random field 55,176 215 215
Past seismicity + strain rate + random field 55,221 260 45
Past seismicity + strain rate + slip rate + random field 55,239 278 18
Fault geometry + fault distance + past seismicity + random field 55,255 294 16
Fault geometry + past seismicity + random field 55,347 386 92
Fault distance + past seismicity + random field 55,673 712 326
Fault distance + past seismicity + slip rate + random field 55,685 724 12
Fault geometry + strain rate + slip rate + random field 55,727 766 54
Fault geometry + strain rate + random field 55,758 797 31
Past seismicity + random field 55,979 1,018 221
Past seismicity + slip rate + random field 55,992 1,031 13
Fault geometry + fault distance + random field 56,185 1,224 193
Strain rate + slip rate + random field 56,231 1,270 46
Strain rate + random field 56,236 1,275 5
Fault geometry + random field 56,373 1,412 137
Fault distance + random field 56,472 1,511 236
Fault distance + slip rate + random field 56,479 1,518 7
Slip rate + random field 56,812 1,851 333
Random field only 56,821 1,860 9
Fault distance only 109,791 54,830 52,970
Past seismicity only 112,361 57,400 2,570
Slip rate only 112,697 57,736 336

and the fault factor refers to a binary factor covariate which returns 1 in the event that any given point is
within a fault polygon and 0 elsewhere, therefore representing a fault map.

Models with random field components perform significantly better than those without. The fault distance
is a more helpful inclusion for models with fault geometry than it is for models including slip rate. The fault
distance model provides similar information to the fault geometry model but allows continuous variation
with distance from the mapped fault location and so should be useful to both model types. This is potentially
a consequence of the poor behavior of the categorical fault factor rather than the inherent utility of the fault
distance map per se. The fault distance map is also limited by the resolution that can be achieved within
the map, currently around 2.5 km. This resolution should be sufficient for the particular catalog used here,
where the majority of events outwith fault polygons have distances of≥2.5 km from the nearest fault polygon
but may be more challenging if many events are at very small fault distances.

The combined model with past seismicity + fault distance + slip rate + strain rate + random field performs
best in terms of DIC. The model DICs tell us that past seismicity is more helpful than the fault distance
when combined with slip rate + random field. Past seismicity is better able to account for areas of spatial
clustering than fault distance maps, but the fault distance maps can account for some fault and event location
uncertainty, so are helpful for the model in terms of improving the DIC. This suggests that the fault distance
map adds extra useful information to the model, even when the fault map used to create it is included.
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Figure 5. The five top performing models by DIC for M4.5+ seismicity (left, a–e) and M2.5+ seismicity (right, f–j). The
scale bar shows the log posterior mean intensity. Intensity scales are different for the two data sets given the different
number of events. Model component performance also varies depending on the data set, with the fault slip rates
proving more useful in the M4.5+ seismicity leading to the prevalence of fault structures in the intensity maps.
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The M2.5+ model contains significant clusters of events. To test if the model component performance is
different at other magnitude cutoffs, we consider a catalog of M4.5+ events, again using the split catalog.
The M4.5+ catalog contains far fewer events, with only 127 earthquakes. Many of these are related to the
M7.2 2010 El Mayor-Cucupah earthquake in Baja California. The location of these events and the five best
models by DIC for each of these two data sets are shown in Figure 5. The two different data sets have different
scales because of the different number of events, though the resulting intensity patterns are similar. The past
seismicity + strain rate model performs well for both data sets in terms of its ranking. The slip rates (NK)
perform better for the M4.5+ data set due to the higher slip rates on faults in the Baja California region,
where the majority of M4.5+ events occur. This leads to the fault geometry being a stronger constraint on
the resulting intensity as opposed to in the M2.5+ catalog.

As well as looking at the performance of different models spatially and their DIC, we can examine the pos-
teriors of the different model components to see how much each component contributes to the intensities.
This allows us to consider the contribution of individual components to the models and how this changes
with different component combinations. This is especially useful when we are using components that may
account for similar spatial patterns.

In the case of the M2.5+ model with the lowest DIC, the past seismicity and strain rate components con-
tribute most significantly to the intensity with a posterior mean and standard deviation of 5.6± 0.2 and
3.76± 0.15, respectively, while the fault distance and slip rate components have a much smaller contribution
at −0.076± 0.005 and 0.009± 0.007. The full posterior distributions can be found in supporting information
Figure S4. Table 3 shows that though the contributions of the fault distance and slip rate are small, they do
improve the DIC of the model overall.

In both data sets, the smoothed seismicity always improves the model DIC by accounting for some of the
significant spatial clustering of events and by highlighting areas where many events have occurred before.
As the past seismicity includes smaller events, it can therefore account for very high intensity in areas which
have experienced large earthquake sequences in the past. The strain rate model also consistently performs
well, both on its own and in combination with other components. The model of strain rate and past seismic-
ity performs very well (Table 3), which is consistent with the Strader et al. (2018) assessment of the GEAR1
forecast. In this case, we can see from the output model intensity that the strain rate model is important
for constraining the spatial limits of seismicity in a way that other model components cannot. This suggests
that the strain rate can contribute helpful information to forecasts, and the global availability of the strain
rate map means that this can be added to models for other regions where detailed information on faults may
be unavailable or have higher uncertainty. Though the fault geometry and fault distance maps are not par-
ticularly useful on their own, they improve models when they are included by accounting for some of the
smaller spatial structure that is not defined by better performing components. The fault distance map may
account for some of the uncertainty in the fault geometry, but it also improves models which otherwise only
include the fault geometry, because it can account for the lack of events in the northeast and southwest of
the map. The fault distance map is likely to be more useful in areas where the fault map is less complete or
highly uncertain. It may also perform better when fault buffers are smaller or not constrained by fault dips.
The slip rates proved to have variable performance, proving useful for M ≥ 5.5 models (see also supporting
information Figure S1) and in M4.5 models but less useful for smaller events (Table 3).

Component performances are ranked according to their individual performance and their performance in
combination with other components considering both data sets. The availability of the model components
is also considered, as are any alternatives that could be considered in model construction if the specific
component is unavailable or as a comparison. While the past seismicity is catalog dependent, it can be cal-
culated for any region by fitting a random field to the point data. The fault geometry and slip rates are highly
dependent on the area of study, but the fault distance map can potentially help to explain some of the spa-
tial distribution of events where these components are incomplete or unavailable. The random field from
models with fault geometry and fault distance components could help to identify areas in which the fault
map is incomplete. The GEM strain rate model is a global strain rate model and is therefore available for any
region; however, the deforming cells at oceanic plate boundaries are poorly constrained which may lead to
some model artifacts. This can be seen in our California example (Figure 1) as the thin blue stripe in the
south of the map, which is the result of the plate boundary imposed by the modeling.
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Table 4
Fault Model Rankings at Different Magnitude Cutoffs

Model M5.5+ M5.0 + M4.5+ M4.0+ M3.5+
UCERF faults 3 3 2 1 1
QFaults 1 1 1 2 3
NK slip rates 2 2 3 3 4
Randomized slip rates 5 5 4 4 2
Random field only 4 4 5 5 5

This provides us with a foundation for building models for any region, by identifying which components
work well and which components can be used in their place should they be unavailable, which is summa-
rized in Figure S5 of supporting information. Extending this approach by considering other data types and
performance in other regions could prove valuable for constructing earthquake forecasts in future work.

5.3. Fault Geometry, Slip Rates, and Their Effects at Different Magnitudes

We have considered so far the UCERF3 fault geometry and slip rate data, but the above comparisons of
model component combinations at different magnitudes demonstrate that the slip rates may have different
importance for different data sets. We test this by comparing slip rate and fault geometry models at different
magnitude cutoffs. We also use a set of randomized slip rates, where the slip rates are randomly reassigned
to faults within the geometry, to test how much the usefulness of the slip rates is influenced by the actual
slip rate values and how much is a function of the models ability to consider different faults more or less
important. Finally, we also include the QFault model as an alternative fault geometry. This combination of
models allows us to assess the performance of slip rates and fault geometry as a function of the magnitude
cutoffs and to further explore why different model components perform well or otherwise.

Table 4 ranks each of the five models at several different magnitude thresholds, highlighting changes to
model ranking as a result of the changes in data set. Lower magnitude thresholds will result in catalogs with
more significant clustering, but as mentioned with the M4.5+ catalog above, there may still be significant
clustering even at higher magnitude cut-offs. Longer catalogs could help to minimize the effect of recent
large sequences. The randomized slip rates will perform better when they better account for the observed
seismicity at different cutoffs. In this case the randomized slip rates do not perform better than modeled
slip rates at magnitudes M4+. This is consistent with the results for M2.5+ seismicity above and suggests
that the slip rates are more useful for describing the locations of large events. For events M4.5+, the slip
rates perform better than the fault geometry alone, but in each of these models the Quaternary fault model
performs better than the UCERF3 fault geometry. Figure 1 demonstrates that the Quaternary fault geometry
includes many faults to the northeast which can better account for seismicity in this region. The UCERF3
fault geometry performs better than the Quaternary faults at lower magnitudes due to the changing number
and distribution of events. For larger magnitude catalogs, events not related to the UCERF3 geometry faults
will be significant as a function of catalog size, but this will be less true for smaller magnitude events (and
therefore larger catalogs). This may also be related to the buffering of the fault geometries being different,
with the fixed buffering of the Quaternary faults performing more poorly than the dip-dependent buffering
in the UCERF geometry. The changes in model ranking at different magnitude cutoffs highlight the effect
of clustering and the inclusion of smaller events on model component performance and the complexity
involved in constructing such models.

In summary, models including the fault maps and strain rate data are always improvements on the random
field seismicity model alone and add more information for larger magnitude thresholds. This is important
for applications to seismic hazard, which is normally dominated by intermediate to large magnitude events,
that is, if the frequency-moment distribution takes the form of a pure power law or a power law with an
exponential taper (e.g., Main, 1995). In this case there may be a minimum threshold for being likely to be
felt at a particular intensity likely to cause damage, often set at magnitude 5 for design of Nuclear Power
Plants (Bommer & Crowley, 2017). In such cases, the analysis presented in Table 4 shows that the fault map
and strain rate data provide critical constraints in describing the seismicity.
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6. Discussion
6.1. Smoothed Seismicity

On short forecasting timescales, we should expect local clustering of earthquakes to dominate so we would
expect recent smoothed seismicity models to be informative. On longer timescales we would expect the
entire seismogenic region to be sampled so a longer sample may better account for longer-term trends in
seismicity that are better captured by fault and strain rate maps. For time-independent forecasting, as long
a sample as possible should be used, so that the effect of short-term clustering is reduced and as many large
events as possible are captured within the past seismicity model.

The earliest models submitted to the Regional Likelihood Earthquake Model testing (RELM, a precursor
to CSEP) were mostly constructed on the basis of some form of smoothed seismicity (Field, 2007), though
some also included strain rates or geological information. The preliminary results for California found that
the smoothed past seismicity model of Helmstetter et al. (2007) provided the best result of all submitted
models (Schorlemmer et al., 2007; Zechar et al., 2013) whether aftershocks were included or not. Smoothed
seismicity has also been found to perform well for forecasting when combined with strain rate (Bird et al.,
2015; Strader et al., 2018) and when updated regularly as part of 1 day forecasts in New Zealand (Rhoades
et al., 2018). Our results above demonstrated the utility of the past seismicity in spatial seismicity models,
both individually and in combination with other components. We saw that including the past seismicity
with other components always improved model DIC compared to models with the same components and no
past seismicity. We are therefore quite confident that our results using the inlabru approach are consistent
with findings well documented elsewhere in the literature. Further, we have demonstrated that a Matérn
smoothing of the spatial intensity is also suitable for describing past seismicity (see supporting information
and Figure S7 for explicit comparison). The improved performance of the Matérn smoothed seismicity in the
inlabru model may be a result of the alternative gridding—the Matérn smoothing is based upon a Delauney
triangulated mesh constructed from earthquake locations, rather than a uniform grid. We propose that this
may well influence the effect of the smoothed seismicity within the model. In particular, this may be inter-
esting in settings where gridded smoothed seismicity has proved less useful to forecast models, such as in the
Italian CSEP tests (Taroni et al., 2018) which found recent smoothed seismicity to perform less well than a
model which included more historic seismicity and fault locations. The inlabru framework would also allow
the ranking of models containing each of these components as combining the components in one model is
straightforward.

6.2. Slip Rates in California

Our results demonstrated that the slip rate performance is quite variable but generally better for large events
which are more likely to be independent. This would suggest that slip rates could be a valuable constraint
for stationary, time-independent hazard models. To explore the full effect of slip rates on the model DIC,
we remove each fault polygon from the model sequentially and record the DIC for each model to calculate
a ΔDIC for each fault. We do this for two different model types to see the effect of including a random field
and consider only events with M ≥ 5.5.

Figure 6 shows the results for a fault model only (left) and for a model that includes a random field (right).
High positive ΔDIC values suggest that a fault is important to the model, as removing it causes the total
model DIC to increase relative to the model with all faults. Conversely, faults with negative ΔDIC values
suggest that the overall model is improved by their absence. The models with fault slip rates alone return
positive ΔDIC values for 102 faults, while the models with random field return positive ΔDIC values for
286 of 320 faults. This suggests that the random field model finds all faults more valuable to the model
than a model that includes slip rate alone, such that removing any particular individual fault will have a
similar effect on DIC, with a few exceptions. Removing even the largest faults has little effect on DIC, while
removing some of the smaller faults is more significant due to the greater number of events associated with
them, as shown in Figure S8.

The models that include the random field are more likely to have an increased DIC when faults are removed
than the slip rate only model (Figure S8). Removing the faults from the model in this way does not affect DIC
for the models for 95 models without random field component, but none of the faults have ΔDIC = 0 when
a random field is included in the model, suggesting that all faults have a contribution to the total DIC in the
model with random field. Further, the faults with large ΔDIC for the models including a random field have
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Figure 6. ΔDIC values for each fault in the UCERF3 catalog, where the color of the fault reflects the change in total
model DIC when it is removed from the fault polygons. The locations of the M5.5+ events are shown in black, with the
left panel (a) showing the results for a model of slip rate fault polygons only and the model on the right (b) including a
random field component.

a smaller ΔDIC than in models without a random field, such that removing any one individual fault will
have a smaller effect on total DIC for a model with random field. It is also worth noting that the total DIC is
always lower for models with a random field than models without. The random field is able to explain more
of the spatial distribution than the slip rate model alone, such that removing any individual fault does not
have a significant impact on resulting DIC. This is promising for areas where the fault map is less complete.
These findings demonstrate that the slip rates in California cannot fully account for the observed spatial
distribution of earthquakes. The slip rate or size of an individual fault does not correlate with the number
of events occurring within the fault polygon.

6.3. The 2019 Ridgecrest Sequence

The July 2019 Ridgrecrest sequence in southern California allowed us to apply the inlabru method to a recent
event sequence. We used a catalog of 1,459 M2.5+ events that occurred between 15 June and 15 July 2019
retrieved from the USGS earthquake database. We consider events that fall within an area of −117 to −118
longitude and 35–37 latitude. Within our Ridgecrest catalog, 985 events are not within a buffered UCERF3
fault polygon, with the remaining 474 events linked to five different fault polygons. The M7.1 event on 6 July
and the M6.4 event 2 days previously are not within any UCERF3 buffered fault polygon, with the largest
event directly linked to a fault polygon being a magnitude 5.5 event on the Airport Lake fault. This motivated
us to try the USGS Quaternary fault model as an alternative fault map.

We constructed four models for seismicity during this time period (Figure 7), each including a random
field and one spatial covariate: UCERF3 and Quaternary fault geometries, the GEM strain rate and a past
seismicity model based on the entire UCERF3 catalog, and subsequent events (i.e., events from May 2012 to
January 2019 as well as the UCERF3 events). All four models were compared to a random field only model
and proved to improve the model DIC, highlighting that each of these covariates was helpful in describing
the spatial patterns of seismicity.

The past seismicity and strain rate models perform best according to the DICs recorded in Table 5, though
the predicted intensity models show the grid pattern that comes from the spatial resolution of the input
covariates. This gridding appears to benefit the models, with high intensity areas falling within grid squares
with higher past seismicity. The area of the Ridgecrest events is a generally higher strain rate area than
most of Southern California. In both cases, increased resolution of the data may improve the perfor-
mance, but we can see that the current resolution is enough to improve the model. The UCERF3 geometry
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Figure 7. Predicted field intensities for the Ridgecrest events for four different models: (a)UCERF faults, (b) strain rate,
(c) Quaternary fault geometry, and (d) past seismicity. The scale bar shows the log posterior mean intensity.

outperforms that of the Quaternary faults, but this appears to be a result of the buffering applied: The larger
buffers of the UCERF3 model allow it to account for some of the events despite the lack of matching geom-
etry (see supporting information figure S6). The Quaternary fault model contains many smaller faults, and
it is likely that a larger spatial buffer on these faults would fill the area of the Ridgecrest events without nec-
essarily accounting for the correct geometry. In this case neither fault map performs as well as the strain
rate, which reinforces the usefulness of the strain rate in spatial models of seismicity. Choosing appropriate
buffers for fault projections will remain an ongoing challenge for fault-dependent models, but by including
other components in a model the effect of incomplete fault maps or poorly chosen buffers can potentially
be reduced.

Table 5
Seismicity Models for July 2019 Ridgecrest Sequence, Where Δ DIC Compares
DIC for the “Best” Model and δDIC Compares DIC for the Next Best Model

Model DIC ΔDIC 𝛿DIC
Past seismicity + random field 1,006 0 0
Strain + random field 1,097 91 91
UCERF faults + random field 1,121 115 24
Quaternary faults + random field 1,129 123 8

BAYLISS ET AL. 20 of 24



Journal of Geophysical Research: Solid Earth 10.1029/2020JB020226

6.4. Current Limitations

This paper is the first attempt at applying inlabru for modeling seismic hazard based primarily on exist-
ing functionality. There are currently several limitations that we are addressing in ongoing work. This will
include extending the model to include magnitudes of events as marks jointly modeled with the random
field. Event magnitudes are likely to affect the spatial correlation range of events, thus modifying the struc-
ture of our random field. They have been considered here in terms of the choice of catalog only, with the
magnitudes of individual events not considered in the model. The model will then be further extended
to include time dependence, which requires the model to be self-exciting, for example, applying an ETAS
model to the data. Further extensions to account for uncertainty in event location and in the various input
parameters will also be considered, as well as the development of a robust model assessment and compar-
ison approach so as not to rely so heavily on the DIC and number of events alone. Marzocchi et al. (2012)
suggest that when constructing hybrid models, the correlation between included forecasts should be consid-
ered when weighting model components. The components of our models are sometimes highly correlated,
but the contribution from each component to the total mean intensity can be considered using the compo-
nent posterior means. This allows us to identify under which circumstances the contributions of individual
components are most significant to the observed intensity. Future work will make use of these compo-
nent contributions in the construction of prospective forecasts of seismicity and assess the extent to which
the inclusion of different (perhaps correlated) parameters affects the spatial distribution of forecast events.
Nevertheless, we have presented a proof of concept for the inlabru method, demonstrating that it is a promis-
ing method that can be developed in future research. We have also used it to demonstrate several findings
consistent with previous work and some that are specific to the present work.

7. Conclusions
We have demonstrated for the first time that LGCP models for earthquake data can be constructed, fit-
ted, and tested efficiently using INLAs in a purely data-driven approach. The inlabru approach and model
framework allow the quick and easy construction of seismicity models that include various different types
of information, including fault polygons (with or without some attached mark of their own), derived prod-
ucts such as distance to the nearest fault, and spatially continuous models, such as strain rate data and past
seismicity. The inlabru approach confirms results from the literature in terms of the inclusion of past seis-
micity and fault information in seismicity models, allows the straightforward combination of different data
types, and allows the ranking of models by making use of the model DIC. Including strain rate data con-
strains the spatial limits of seismicity in California, while maps of distance to nearest fault prove beneficial
even to models which also include the fault maps themselves by accounting for seismicity not associated
with specific mapped faults. Further, the importance of information within individual components can also
be tested, such as by considering changes to the model DIC when individual faults are removed. Such a
framework allows the user to identify which model components truly benefit the model, the best combina-
tion of different model components, and to identify spatial areas in which their model is currently lacking
by considering the random field.

Acronyms
LGCP Log-Gaussian Cox process
INLA Integrated nested Laplace approximations
GMRF Gaussian-Markov Random Field
SPDE Stochastic partial differential equations
DIC Deviance Information Criterion

Data Availability Statement
UCERF3 data are available online (https://pubs.usgs.gov/of/2013/1165/).
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Abstract. Probabilistic earthquake forecasts estimate the likelihood of future earthquakes within a specified time-space-

magnitude window and are important because they inform planning of hazard mitigation activities on different timescales. 

The spatial component of such forecasts, expressed as seismicity models, generally rely upon some combination of past event 

locations and underlying factors which might affect spatial intensity, such as strain rate, fault location and slip rate or past

seismicity. For the first time, we extend previously reported spatial seismicity models, generated using the open source inlabru5

package, to time-independent earthquake forecasts using California as a case study. The inlabru approach allows the rapid

evaluation of point process models which integrate different spatial datasets. We explore how well various candidate forecasts

perform compared to observed activity over three contiguous five year time periods using the same training window for the

seismicity data. In each case we compare models constructed from both full and declustered earthquake catalogues. In doing

this, we compare the use of synthetic catalogue forecasts to the more widely-used grid-based approach of previous forecast10

testing experiments. The simulated-catalogue approach uses the full model posteriors to create Bayesian earthquake forecasts.

We show that simulated-catalogue based forecasts perform better than the grid-based equivalents due to (a) their ability to

capture more uncertainty in the model components and (b) the associated relaxation of the Poisson assumption in testing. We

demonstrate that the inlabru models perform well overall over various time periods, and hence that independent data such as

fault slip rates can improve forecasting power on the time scales examined. Together, these findings represent a significant15

improvement in earthquake forecasting is possible, though this has yet to be tested and proven in true prospective mode.

1 Introduction

Probabilistic earthquake forecasts represent our best understanding of the expected occurrence of future seismicity (Jordan

and Jones, 2010). Developing demonstratively robust and reliable forecasts is therefore a key goal for seismologists. A key

component of such forecasts, regardless of the timescale in question, is a reliable spatial seismicity model that incorporates20

as much useful spatial information as possible in order to identify areas at risk. For example in probabilistic seismic hazard

modelling (PSHA) a time independent spatial seismicity model is developed by combining a spatial model for the seismic

sources with a frequency magnitude distribution. In light of the ever-growing abundance of earthquake data and the presence

of spatial information that might help understand patterns of seismicity, Bayliss et al. (2020) developed a spatially-varying point

1
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process model for spatial seismicity using Log-Gaussian Cox processes evaluated with the Bayesian integrated nested Laplace25

approximation method (Rue et al., 2009) implemented with the open-source R package inlabru (Bachl et al., 2019). Time-

independent earthquake forecasts require not only an understanding of spatial seismicity, but also need to prove themselves to

be consistent with observed event rates and earthquake magnitudes in the future.

Forecasts can only be considered meaningful if they can be shown to demonstrate a degree of proficiency at describing

what future seismicity might look like. The Regional Earthquake Likelihood Model (RELM, Field, 2007) experiment and30

subsequent Collaboratory for the study of earthquake predictability (CSEP) experiments challenged forecasters to construct

earthquake forecasts for California, Italy, New Zealand and Japan (e.g. Schorlemmer et al., 2018; Taroni et al., 2018; Rhoades

et al., 2018, and other articles in this special issue) to be tested in prospective mode using a suite of pre-determined statistical

tests. The testing experiments found that the best performing model for seismicity in California was the Helmstetter et al. (2007)

smoothed seismicity model, whether aftershocks were included or not (Zechar et al., 2013). This model requires no mosaic of35

seismic source zones to be constructed, requiring only one free parameter - the spatial dimension of the smoothing kernel. In

the years since this experiment originally took place, there has been considerable work both to improve the testing protocols

and to develop new forecast models which may improve upon the performance of the data-driven Helmstetter et al. (2007)

model, primarily by including different types of spatial information to augment what can be inferred from the seismicity alone.

Multiplicative hybrid models (Marzocchi et al., 2012; Rhoades et al., 2014, 2015) have shown some promise, but these require40

some care in construction and further testing is needed. The performance of smoothed seismicity models has been found to be

inconsistent in testing outside of California, e.g. with the Italian CSEP experiment finding smoothed past seismicity alone did

not do as well as models with much longer term seismicity and fault information (Taroni et al., 2018). Thus, finding and testing

new methods of allowing different data types to be easily included in developing a forecast model is an important research

goal. Here we explore in particular the role of testing an ensemble of point process simulated catalogues (Savran et al., 2020)45

in comparison with traditional grid-based tests, where the underlying point process is locally averaged in a grid element.

In this paper we construct and test a series of time-independent forecasts for California by building on the spatial modelling

approach described by Bayliss et al. (2020). As a first step in the modelling we take a pseudo-prospective approach to model

design, with the forecasts being tested retrospectively on time periods subsequent to the data on which they were originally

constructed, and test the models’ performance against actual outcome using the pyCSEP package (Savran et al., 2021). This is50

not a sufficient criterion for evaluating forecast power in true prospective mode, but is a necessary step on the way, and (given

similar experience of ‘hindcasting’ in cognate disciplines such as meteorology) can inform the development of better real-time

forecasting models. The results presented here will in due course be updated and tested in true prospective mode, using a

training dataset up to the present. We first test the pseudo-prospective seismicity forecasts in a manner consistent with the

RELM evaluations. For this comparison we use a grid of event rates and the same training and testing time windows to provide55

a direct comparison to the forecasts of the smoothed seismicity models of Helmstetter et al. (2007), which use seismicity data

alone as an input, and provide a suitable benchmark to our study. We then extend this approach to the updated CSEP evaluations

for simulated catalogue forecasts (Savran et al., 2020) and show that the synthetic catalogue-based forecasts perform better

2
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than the grid-based equivalents, due to their ability to capture more uncertainty in the model components and the relaxation of

the Poisson assumption in testing.60

2 Method

We develop a series of spatial models of seismicity modelled by a time-independent Log-Gaussian Cox Process and fitted with

inlabru, as described in detail in Bayliss et al. (2020), and whose workflow is summarised in Figure 1. The models take as input

twenty years (1984-2004) of California earthquakes with magnitude≥ 4.95 from the UCERF3 dataset (Field et al., 2014), with

the magnitude cutoff chosen to be consistent with the RELM forecast criteria. The locations of these events are an intrinsic65

component of a point process model with spatially varying intensity λ(s), where the intensity is described as a function of

some underlying spatial covariates xm(s), e.g. input data from seismicity catalogues or geodetic observations of strain rate,

and a Gaussian random field ζ(s) to account for spatial structure that is not explained by the model covariates. The spatially

varying intensity then can be described with a linear predictor η(s) such that

λ(s) = eη(s), (1)70

and η(s) can be broken down into a sum of linearly combined components

η(s) = β0 +
M∑

m=1

βmxm(s) + ζ(s). (2)

The β0 term is an intercept term, which would describe a spatially homogeneous Poisson intensity if no other components

were included, and each βm describes the weighting of individual spatial components in the model. β0 is essentially the uniform

average or base-level intensity, which allows the possibility of earthquakes happening over all of the region of interest as a null75

hypothesis, so ’surprises’ are possible, though unlikely after adding the other terms and renormalising. The models are built on

a mesh (step 2 of Figure 1) which is required to perform numerical integration in the spatial domain, with the model intensity

evaluated at each mesh vertex as a function of the random field (RF, which is mapped by stochastic partial differential equations

or SPDE in step 3 of Figure 1) and other components of the linear predictor function (equation 2). Fitting the model results in a

posterior probability distribution for each of the model component weights, the random field and the joint posterior probability80

distribution for the intensity as a function of these components. The expected number of events can then be approximated by

summing over the mesh and associated weights over the area of interest (Step 5 of figure 1). The performance of the models can

then be evaluated by comparing the expected versus the observed number of events, and the models ranked using the resulting

model deviance information criterion (DIC). DIC is commonly applied in other applications of Bayesian inference, including

inlabru applications to other problems, such as spatial distributions of species in ecology. With the definition used here, DIC is85

lower for a model with better predictive skill.

In Bayliss et al. (2020) a range of California spatial forecast models were tested on how well the spatial model created

by inlabru fitted the observed point locations, so were essentially a retrospective test of the spatial model alone in order to

3
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Key functions / codes

pcmatern <- inla.spde2.pcmatern (mesh,   prior.sigma = c(..., ...),   prior.range = c(..., ...)) 
components <- coordinates ~ Smooth (coordinates, pcmatern) + Intercept (1) 

mesh <- inla.mesh.2d (boundary=..., max.edge=..., min.angle=..., max.n=c..., max.n.strict=..., cutoff=..., crs=...) 

sp :: coordinates (catalogue) <- c ("longitude", "latitude") 
proj4string (catalogue) <- CRS (SRS_string = 'EPSG: ...')
spTransform(catalogue,  local_EPSG_string)
fm_crs_set_lengthunit(catalogue, "km")

predict (fit, pixels (mesh, mask=...), ~(Smooth + Intercept))

fit <- lgcp (components, data, domain , samplers, etc,) 

plot (spde.posterior (fit, "Smooth", what = "...")) 

predict (fit, ipoints (boundary, mesh), ~ sum(weight * exp (Smooth + Intercept))) 
predict (fit, ipoints (boundary, mesh), ~ data.frame(N =... , dpois (..., lambda = sum (weight * exp (Smooth + Intercept))))

inla.nonconvex.hull (coordinates (loc), ...)      OR      read.delim (...) / read.csv (...) / readOGR (...) / etc.  

mesh$n 
inla.mesh.assessment (mesh, spatial.range = ..., alpha = ..., dims = ...)

deltaIC (fit1, fit2, fit3, ...) 

Main tasks Sub-tasksMain steps

setting priors of range and stdev

assessing range, stdev, and β 

plotting range, variance, Matérn
covariance & correlation, etc.

Plotting predicted (log) intensity
on a pixel map  

loading real data OR 
generating synthetic data
converting to SpatialPoint
attaching CRS

posterior mean distribution

DIC or WAIC ranking

based on observed points OR
using a specified polygon

tuning mesh quality parameters 

checking number of vertices
histogram and map of stdev

Data Modification

Ranking models

Mesh assessment

Mesh structure

Mesh boundary

SPDE model for RF

Estimating abundance

posterior distributions

Fitting LGCP function

Predicting intensity

2D time-independent seismicity modelling with inlabru

factor covariates 
continuous covariates
distance sampling data 

Linear predictor for RF 

Linear predictor for 
spatial covariates

SPDE + intercept

extending to full time-
independent forecasts

Mesh
building

Data 
import

Specifying
model

Fitting 
LGCP model

Predicting
intensity

Comparing
models

1

2

3

4

6

7

5

magnitude distribution on grid
using GR
magnitude distribution from
simulated catalogues using TGRSpatial 

rate model

     pyCSEP package (Savran et al., 2021)

CSEP tests number test (N-test)
magnitude test (M-test)
spatial test (S-test)
conditional likelihood test (CL-
test)
pseudo-likelihood test (PL-test)

forecast_sampler (loglambda, boundary, mesh,  crs=crs_wgs84, num_events, b_val, m_min)

csep_grid_wrapper(fit, lgcp_model,  boundary, dh, mag_min, mag_max, b_est, mesh)

Figure 1. The workflow for generating spatial seismicity models in inlabru, with functions shown on the right.
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understand which components were most useful in developing and improving such models. Here we test such models in

pseudo-prospective mode for California, again using the approach of testing different combinations of data sets as input data.90

We develop a series of new spatial models to compare with the smoothed seismicity forecast of Helmstetter et al. (2007).

These models contain a combination of four different covariates that were found to perform well in terms of DIC in Bayliss

et al. (2020). These are shown in Figure 2 and include the GEM strain rate (Kreemer et al., 2014) (SR) map, NeoKinema

model slip rates (NK) attached to mapped faults in the UCERF3 model (Field et al., 2014), a past seismicity model (MS) and

a fault-distance map (FD) constructed using the UCERF3 fault geometry, with fault polygons buffered by their recorded dip.95

The past seismicity model used here is derived from events in the UCERF3 catalogue that occurred prior to 1984. For this

data set, we fitted a model which contained only a Gaussian random field to the observed events, thus modelling the seismicity

with a random field where we do not have to specify a smoothing kernel, the smoothing is an emergent property of the latent

random field. This results in a smoothed seismicity map of events which occurred before our training dataset. This smoothed

seismicity model also includes smaller magnitude events and those where the location or magnitude of the event is likely to100

be uncertain, so may account for some activity that is not observed or explicitly modelled (e.g. due to short-term clustering) at

this time. Each of these components (SR, MS, NK, FD) is included as a continuous spatial covariate combined with a random

field and intercept component. The M4.95+ events from 1984-2004 are used to construct the point process itself. The exact

combination of components in a model is reflected in the model name as set out in Table 1. More details on each of these model

components and their performance in describing locations of observed seismicity can be found in Bayliss et al. (2020). Step 7105

of the workflow covers the steps described below and results presented here.

2.1 Developing full forecasts from spatial models

The inlabru models provide spatial intensity estimates which can be converted to spatial event rates by considering the

timescales involved. Since the models we develop here are to be considered time-independent, we assume that the number

of events expected in this time period is ‘scaleable’ in a straight-forward manner, consistent with a (temporally homogeneous)110

spatially-varying Poisson process. However we know that the rate of observed events is not Poissonian due to observed spatio-

temporal clustering (Vere-Jones and Davies, 1966; Gardner and Knopoff, 1974) and that short time-scale spatial clustering can

lead to higher rates anticipated in areas where large clusters have previously been recorded (Marzocchi et al., 2014). To test the

impact of clustering on our forecasts, we include models made from both the full and declustered catalogues, assuming that

the full catalogues might overestimate the spatial intensity due to observed spatio-temporal clustering and forecast higher rates115

in areas with recent spatial clustering. We decluster the catalogue by removing events allocated as aftershocks or foreshocks

within the UCERF3 catalogue, which were determined by a (Gardner and Knopoff, 1974) clustering algorithm (UCERF3

appendix K). This results in 6 spatial models that we use from this point on, containing components as outlined in Table 1.

The posterior mean of the log intensity for each of these models is shown in Figure 3. These models are constructed using

an equal-area projection of California and converted to latitude and longitude only in the final step before testing. This figure120

represents the set of models formed by the training data set.
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Figure 2. Input model covariates (clockwise from top left): GEM strain rate (SR), NeoKinema Slip rates from UCERF3 (NK), distance to

nearest (UCERF3, dip and uniformly buffered) fault in km (FD), Smoothed seismicity from a Gaussian random field for events before 1984

(MS).

To extend this approach to a full forecast, we distribute magnitudes across the number of expected events according to a

frequency-magnitude distribution. Given the small number of large events in the input training catalogue, a preference between

a Tapered Gutenberg-Richter (TGR) or standard Gutenberg-Richter magnitude distribution with a rate parameter a, related to

the intensity lambda, and an exponent b cannot be fully expressed. The choice of a b-value is not straightforward, as the b-value125

can be biased by several factors (Marzocchi et al., 2020) and is known to be affected by declustering (Mizrahi et al., 2021). In

this case, we assume b= 1 for both clustered and declustered catalogues and for the TGR magnitude distribution we assume

a corner magnitude of Mc = 8 for the California region proposed by (Bird and Liu, 2007) and used in the Helmstetter et al.

(2007) models.

For the gridded forecasts (which assume a uniform event rate or intensity within the area of each square element), we use the130

posterior mean intensity as shown in Figure 3, transformed to a uniform grid of 0.1 x 0.1 latitude/longitude within the RELM

region. We use latitude-longitude here as preferred by the pycsep tests. Magnitudes are then distributed across magnitude bins

on a cell-by-cell basis according to the chosen magnitude-frequency distribution and the total rate expected in the cell. In this

paper, we show GR magnitudes for the gridded forecasts. For the catalogue-based forecasts, we generate 10,000 samples from

the full posteriors of the model components to establish 10,000 realisations of the model spatial intensity within the testing135
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Figure 3. Posterior mean intensity for the six inlabru models created with full (top) and declustered (bottom) catalogues of events from

1985-2004.

polygon. We then sample a number of points consistent with the modelled intensity. In this case, we use the expected number

of points given the mean intensity (as in step 6 in Figure 1) for one year, and randomly select an exact number of events

for a simulated catalogue from a Poisson distribution about the mean rate, scaled to the number of years in the forecast. To

sample events in a way that is consistent with modelled spatial rates, we sample many points and calculate the intensity value

at the sampled points given the realisation of the model. We then implement a rejection sampler to retain points that have a140

significantly large intensity ratio compared to the largest intensity in the specific model realisation, with points retained only if

the intensity ratio is greater than a uniform random variable between 0 and 1, that is points are retained with probability equal

to 1− λp

λmax
. The set of retained points for each catalogue are then assigned a magnitude sampled from a TGR distribution,

by methods described in Vere-Jones et al. (2001). Here we only sample magnuitudes from a TGR distribution in line with the
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csep_grid_wrapper(lgcp_fit, lgcp_model, bdy, dh,
mag_min, mag_max, b_est, mesh)

predict field on model mesh
predict(lgcp_fit, mesh, lgcp_model)

Project to get intensity values in grid cells

proj <- INLA::inla.mesh.project(mesh, pts_grd)

Calculate total number of events
for cell from projected intensity

Distribute total rate across
specified magnitude bins

(mag_min - mag_max) according
to GR with specified b-value b_est

point_sampler(loglambda,  bdy, mesh,  crs, num_events, b_val, m_min)

Sample magnitudes
from TGR distribution

for all events in
simulated catalogue

using b-val and m_min

Set up grid of cell size dh over total
area of interest, specified by boundary

polygon bdy

select number of events for specific
stochastic catalogue

   =  rpois(1, num_events)

Sample many points from within
boundary area (bdy) - project to get

intensity at each point 

Keep points where

Repeat until kept points
>= 

Randomly select 
points for forecast

Get  from loglambda - a
sample from generate  

generate(lgcp_fit, mesh, lgcp_logmodel, n.samples = 10000)

Generate samples from full model posteriors with the inlabru generate function. n.samples = total number of
simulated catalogues to be created. Generate samples at mesh vertices so they can be projected to spatially

continuous field. 

Grid-based forecasts Catalogue-based forecasts

Figure 4. Schematic of the code for constructing grid-based (left) and simulated catalogue-based (right) earthquake forecasts given an inlabru

LGCP intensity model. These represent step 7 of the workflow.

approach of Helmstetter et al. (2007), to allow a like for like comparison with this benchmark. A schematic diagram showing145

how grid and catalogue-based approaches are applied is shown in Figure 4.

2.2 CSEP tests

To test how well each forecast performs, we first test the consistency of the model forecasts, developed from data between

1984 and 2004, with observations from three subsequent and contiguous 5-year time periods, using standard CSEP tests for

the number, spatial and magnitude distribution and conditional likelihood of each forecast. The original CSEP tests calculate a150

quantile score for the number (N), likelihood (L) (Schorlemmer et al., 2007) and spatial (S) and magnitude (M) (Zechar et al.,

2010) tests, based on simulations that account for uncertainty in the forecast and a comparison of the observed and simulated

likelihoods. We use 100 000 simulations of the forecasts to ensure convergence of the test results. The number test is the most

straightforward, summing the rates over all forecast bins and comparing this with the total number of observed events. The

quantile score is then the probability of observing at least Nobs events given the forecast, assuming a Poisson distribution of155

the number of events. Zechar et al. (2010) suggests using a modified version of the original N-test that tests the probability of

a) at least Nobs events with score δ1 and b) at most Nobs events with score δ2 in order to test the range of events allowed by a

forecast. Here we report both N-test quantile scores in line with this suggestion.
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The likelihood test compares the performance of individual cells within the forecast. The likelihood of the observation given

the model is described by a Poisson likelihood function in each cell and the total joint likelihood described by the product160

over all bins. The quantile score measures if the joint log-likelihood over many simulations falls within the tail of the observed

likelihoods, with the score defined by the fraction of simulated joint log-likelihoods less than or equal to the observed. The

conditional likelihood or CL test is a modification of the L-test developed due to the dependence of L-test results on the

number of events in a forecast (Werner et al., 2010, 2011). The CL-test normalises the number of events in the simulation

stage to the observed number of events in order to limit the effect of a significant mismatch in event number between forecast165

and observation. The magnitude and spatial tests compare the observed magnitude and spatial distributions by isolating these

from the full likelihood. This is again achieved with a simulation approach and by summing and normalising over the other

components. For the M-test, the sum is over the spatial bins while the S-test sums over all magnitude bins to isolate the

respective components of interest. The final test statistic in both cases is again the fraction of observed log likelihoods within

the range of the simulated log likelihood values. In all cases small values are considered inconsistent with the observations -170

we use a significance value of 0.05 for the likelihood-based tests and 0.025 for the number tests to be consistent with previous

forecast testing experiments (Zechar et al., 2013).

In the new CSEP tests (Savran et al., 2020), the test distribution is determined from the simulated catalogues rather than a

parametric likelihood function. For the N-test the construction of the test distribution is straightforward, being created from the

number of events in each simulated catalogue and the quantile score calculated relative to this distribution. For the equivalent175

to the likelihood test a numerical, grid-based approximation to a point process likelihood is calculated (Savran et al., 2020).

This is a more general approach than using the Poisson likelihood as in the grid-based tests, which penalises models that do not

conform to a Poisson model. The distribution of pseudo-likelihood is then the collection of calculated pseudo-likelihood results

for each simulated catalogue. The spatial and magnitude test distributions are derived from the pseudo-likelihood in a similar

fashion to the grid-based approch, as explained in detail by Savran et al. (2020). The quantile scores are calculated similar180

to the original test cases, but because the simulations are based on the constructed pseudo-likelihood rather than a Poisson

likelihood, the simulated-catalogue approach allows for forecasts which are overdispersed relative to a Poisson distribution.

Similarly to the original tests, very small values will be considered inconsistent with the observations.

3 Full and declustered catalogue models

In constructing the three models both with and without clustering, we can examine relative contributions of the model com-185

ponents given differences in spatial intensity resulting from short-term spatio-temporal clustering. Table 1 shows the posterior

mean component of the log intensity for each model both with and without clustering for M4.95+ seismicity, and the number

of expected events per year for each model. The greatest contribution in the full-catalogue models comes from the strain rate

(SR) for each model, with the past seismicity also making a significant contribution to the intensity. For the models where the

catalogue has been declustered, the contribution to the posterior mean from the past seismicity is only slightly lower while190

the strain rate contribution is much smaller, effectively swapping the relative contributions of these components. This suggests
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Table 1. Posterior means of model components and number of expected events for full and declustered (DC) models

mean component contribution to log intensity

Models strain rate (SR) past seismicity (MS) slip rates (NK) fault distance (FD) N

SRMS 1.551 0.853 - - 6.373

SRMSDC 0.415 0.777 - - 3.679

SRMSNK 1.488 0.837 0.017 - 6.44

SRMSNKDC 0.425 0.779 0.001 - 3.79

FDSRMS 1.574 0.857 - 0.001 6.456

FDSRMSDC 0.491 0.784 - 0.004 3.737

that the strain rate component is more useful when considering the full earthquake catalogue than when the catalogue has been

declustered. In both full- and declustered-catalogue models, the number of expected events is similar across all three models,

thus we expect the models to perform similarly in the CSEP N-tests.

Figure 3 shows that the declustered-catalogue models (bottom row) appear much smoother than those constructed from the195

full catalogue, as they have lower intensity in areas with large seismic sequences in the training period. They also have a smaller

range in intensity than the full catalogue models, with the (median) highest rates lower and the (median) lowest rates higher

than the full catalogue models, meaning they cover less of the extremes at either end.

4 Model testing

We now test the models using the pyCSEP package for python (Savran et al., 2021). We begin with the standard (grid-based)200

CSEP test models described by Schorlemmer et al. (2007); Zechar et al. (2010) included in pyCSEP and described in section

2.2.

4.1 Grid-based forecast tests

We first compare the performance of our five-year forecasts, developed with a training window of 1984-2004, over the

testing period 01/01/2006-01/01/2011 with the Helmstetter et al. (2007) forecast. In this time, the comcat catalog (https:205

//earthquake.usgs.gov/data/comcat/). includes 32 M4.95+ events in the study region defined by the RELM polygon. All the

models, regardless of their components or which catalogue is used, perform well in the magnitude tests due to the use of the

GR distribution. The forecast tests are shown visually in Figure 5 and the quantile scores are reported in Table 2 for all tests

and time-periods. A model is considered to pass a test if the quantile score is ≥ 0.05 for all tests except the N-test, where the

significance level is set at ≥ 0.025 for both score components and the model fails if either score fails (Schorlemmer et al.,210

2010; Zechar et al., 2010). In Figure 4 the observed likelihood is shown as a coloured symbol (red circle for a failed test and

green square for a passed one) and the forecast range is shown as a horizontal bar, for ease of comparison. In the number test

(N-test), the declustered forecasts underpredict the number of expected events significantly in all cases due to the much smaller
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Table 2. Quantile scores for CSEP tests. Upper bounds for S, L and PL-tests, lower bound for N. Bold indicates consistency with observations,

italics highlight declustered models.

Gridded Catalogue

Time Models N-test (δ1) N-test (δ2) S-test M-test CL-test N-test (δ1) N-test (δ2) S-test M-test PL-test

2006 - SRMS 0.465 0.603 0.025 0.288 0.105 0.440 0.625 0.180 0.596 0.268

2011 SRMSDC 0.002 0.999 0.738 0.290 0.848 0.002 0.999 0.922 0.158 0.006

FDSRMS 0.463 0.605 0.032 0.289 0.122 0.462 0.606 0.196 0.617 0.305

FDSRMSDC 0.002 0.999 0.692 0.291 0.818 0.001 0.999 0.891 0.162 0.007

SRMSNK 0.486 0.583 0.028 0.293 0.115 0.463 0.605 0.243 0.611 0.327

SRMSNKDC 0.002 0.999 0.711 0.288 0.830 0.002 0.999 0.874 0.167 0.007

2011 - SRMS 0.999 0 0.039 0.158 0.026 1 0 0.011 1 0.999

2016 SRMSDC 0.963 0.064 0.766 0.153 0.485 0.952 0.081 0.807 0.963 0.951

FDSRMS 0.9999 0 0.030 0.155 0.021 1 0 0.011 1 0.999

FDSRMSDC 0.964 0.063 0.744 0.156 0.467 0.958 0.070 0.883 0.965 0.960

SRMSNK 0.999 0 0.070 0.157 0.044 0.999 0 0.0132 0.999 0.9999

SRMSNKDC 0.960 0.068 0.766 0.158 0.487 0.962 0.063 0.793 0.968 0.959

2016 - SRMS 0.792 0.264 0 0.369 0.002 0.772 0.283 0.003 0.564 0.312

2021 SRMSDC 0.029 0.982 0.008 0.368 0.068 0.019 0.989 0.081 0.141 0.005

FDSRMS 0.791 0.266 0 0.367 0.004 0.795 0.268 0.005 0.602 0.369

FDSRMSDC 0.030 0.981 0.0068 0.367 0.062 0.025 0.986 0.073 0.149 0.007

SRMSNK 0.806 0.248 0 0.367 0.006 0.789 0.266 0.006 0.587 0.374

SRMSNKDC 0.027 0.984 0.005 0.369 0.050 0.027 0.983 0.119 0.151 0.009

number of expected events per year and the large number of events that actually occurred in the testing time period. In spatial

testing (S-test), the full-catalogue models all perform poorly. In contrast, the declustered catalogue models all pass the S-test.215

In the conditional likelihood tests (CL-test), all of the models perform well and pass the CL-test (figure 5), with the declustered

models performing better due to better spatial performance.

We then repeat the tests for two additional five year periods of California earthquakes illustrated in Figure 5. In all time

windows, the M-test results remain consistent across all models. In the 2011-2016 period, there are 13 M4.95+ events within

the RELM polygon, and this significant reduction in event number means that our full-catalogue models and the Helmstetter220

models all overestimate the actual number of events significantly, with the true number outwith the 95% confidence intervals of

the models. In contrast, most of the models perform better in the S-test during this time period with the full catalogue slip-rate

model and all declustered-catalogue models recording a passing quantile score (Table 2). Each of the models made with a

declustered catalogue passes the CL-test.

In the 2016-2021 period (Figure 5 top) there are 30 M4.95+ events, which is within the confidence intervals shown for all225

tested models so all models pass the N-test for the first time. However none of the tested models pass the S-test due to the
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Figure 5. Grid-based forecast tests for all forecasts for three five year time periods: 2006-2011 (top), 2011-2016 (middle) and 2016-

2021(bottom). The bars represent the 95% confidence interval derived from simulated likelihoods from the forecast, while the symbol

represents the observed likelihood for observed events. The green square identifies that a model has passed the test and a red circle indicates

inconsistency between forecast and observation. The forecasts are compared to both the full (Helmstetter aftershock) and declustered models

of Helmstetter et al (2007)
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Figure 6. T-test results for the inlabru models showing information gain per earthquake relative to the full Helmstetter et al (2007) model

(helmstetter aftershock in Fig. 5) for three time periods. Red indicates forecasts are worse in terms of information gain and green indicates

forecasts performing better than the benchmark forecast. Grey forecasts are not significantly different in terms of information gain.

spatial distribution of the events in this time period being highly clustered in areas without exceptionally high rates, even for

models developed from the full catalogue. The CL-test results for the 2016-2021 period show that none of the models perform

particularly well in this time period, with two of the declustered-catalogue models passing the test only barely.

These statistical tests (N, S, M and CL) investigate the consistency of a forecast made during the training window with230

the observed outcome. They do not compare the performance of models directly with each other, but rather with observed

events. One method of comparing forecasts is by considering their information gain relative to a fixed model with a paired

T-test (Rhoades et al., 2011). Here, we implement the paired T-test for the gridded forecast to test their performance against the

Helmstetter et al. (2007) aftershock forecast as a benchmark, because it performed best in comparison to other RELM models

in previous CSEP testing over various timescales (Strader et al., 2017). The results of the comparison are shown in Figure 6.235

For the first time period (2006-2011), the models perform similarly in terms of information gain, and all of the inlabru models

perform worse than the Helmstetter model. For the 2011-2016 period, the inlabru models developed from the declustered

catalogues perform better in terms of information gain than those developed from the full catalogue and significantly better than
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the Helmstetter model. In the most recent testing period (2016-2021), the inlabru models have an information gain range that

includes the Helmstetter model. Together these results imply the inlabru models provide a positive and significant information240

gain on a 5-10 year time period after the end of the training period for declustered-catalogue models, and not otherwise.

4.2 Simulated-catalogue forecasts

Our second stage of testing uses simulated catalogues in order to make use of the newer CSEP tests (Savran et al., 2020). We

use the number, spatial and pseudolikelihood (PL) tests to evaluate these forecasts, with the PL test replacing the grid-based

L-test. In our case, as described above the number of events in the simulated catalogues is inherently Poisson due to the way245

they are constructed, but the spatial distribution is perturbed from a homogeneous Poisson distribution due to the contributions

of model covariates and the random field itself (e.g. see equation 1, where a homogenous Poisson process would include only

the intercept term β0) and the parameter values are sampled from the posterior at each simulation, so vary from simulation to

simulation. Figure 7 shows the test distributions for each forecast as a letter-value plot (Hofmann et al., 2011), an extended

boxplot which includes more quantiles of the distribution until the quantiles become too uncertain to discriminate. This allows250

us to understand more of the full distribution of model pseudo-likelihood than a standard quantile range or boxplot, while

allowing easy comparisons between the results for different forecast models.

We expect the grid-based and simulated-catalogue approaches to have similar results in terms of the magnitude (M) tests

due to the similarity of magnitude distributions used in construction, and all models do similarly well in this test (Table 2).

Similarly, we do not expect significant differences in the number tests with this approach, since our method of determining the255

number of events will result in a Poisson distribution of the number of events. However, since the number of events varies in

each synthetic catalogue we can look at the distribution of the number of events in the synthetic data produced by the ensemble

of forecast catalogs relative to the observed number. This is shown in the left panel of Figure 7, with the observed number of

events for each time period shown with a dashed line. Again, the declustered models do better in the 2011-2016 period, though

it is clear the observed number of events is low even for them.260

We might expect the most noticeable differences to occur in the spatial test, because it measures the spatial component

consistency with observed events and because we are now using the full posterior distribution of spatial components, and

therefore potentially allowing more variation in the observed spatial models. The middle panel of Figure 7 shows the spatial

likelihood distribution constructed from simulated catalogues.

Similar to the grid-based examples, for the 2006-2011 period (red star indicator) the spatial performance of the SRMS and265

FDSRMS models is better when the full, rather than declustered catalogue, has been used in model construction.

All of the models pass the S-test when considering quantile scores in this time period. Similarly, when testing the 2011-2016

period (test statistic shown with a blue diamond), all of the models built from the declustered catalogue pass the S-test, while

the full-catalogue models do more poorly. In 2016-2021 (green circle), the spatial performance of all models is again poor. The

best-performing model in this time period is the FDSRMS-declustered model (Table 2), with the declustered-catalogue models270

generally doing better than the full-catalogue models.
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Figure 7. N-test, S-test and pseudo-likelihood results for each of the 6 inlabru models when forecasts are generated from 10 000 synthetic

catalogues sampling from the full inlabru model posteriors. For the n-test, the number of observed events for the 2006-2011, 2011-2016 and

2016-2021 are shown by the red, blue and green dashed lines respectively. For the S- and Pseudo-likelihood tests, the observed test statistic

for each time period is shown as a symbol (red star for 2006-2011, blue diamond for 2011-2016 and green circle for 2016-2021)

Finally, the pseudo-likelihood test (Figure 7, right) incorporates both spatial and rate components of the forecast, much like

the grid-based likelihood. For the inlabru models, the preference between the models for the full and declustered catalogues

changes with time period with both sets of models doing poorly in the 2016-2021 period (green circle). All of the full-catalogue

models pass in 2006-2011 and surprisingly in 2011-2016 and 2016-2021, though some of the quantile scores are again quite275

large and in the upper tails of the likelihood distributions. Like the grid-based likelihood test, the pseudo-likelihood test pe-

nalises for the number of events in the forecast, which allows the full-catalogue models to pass the pseudo-likelihood test even

when they have poor spatial performance, as in the 2011-2016 and 2016-2021 testing periods.

5 Discussion

5.1 Number of events280

While the full-catalogue models performed well in the tests for the first five-year time window, the other two sets of test results

were less promising. This can be largely explained by the number of events that occurred in the 10 year period from 2006-2016
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Figure 8. Top: Catalogue of events in California from 1985-2021. The period 1984-2004 is used for model construction, and the three testing

periods are shown with red, blue and green backgrounds. The left panel shows the magnitude of events in time and the right the number of

events in each year. Bottom: the comcat catalogues for the three five-year testing intervals.

(red and blue backgrounds in Figure 8, top right). In this time 45 events were recorded in the comcat catalog, compared to 32

events in the five years between 2006-2011. In the twenty years from 1984-2004 used in our model construction, a total of

156 events with M > 4.95 were recorded, which is an average of 7.8 events/year. Helmstetter et al. (2007) explicitly use the285

average number events per year with magnitude > 4.95 (7.38) to condition their models. It is therefore not surprising that the

declustered forecasts perform oppositely, with poor performance in the 2006-2011 time period and better performances in the

2011-2016 time period when fewer events occurred. This is a common issue in CSEP testing, reported both in Italy when the

five-year tests occurred in a time period with a large cluster of events in a historically low-seismicity area (Taroni et al., 2018)

and in New Zealand, where the Canterbury earthquake sequence occurred in the middle of the CSEP testing period (Rhoades290

et al., 2018) resulting in significantly more events than expected. Strader et al. (2017) found that four of the original RELM

forecasts overpredicted the number of events in the 2006-2011 time window and 11 overpredicted the number of events in the
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second 5-year testing window (2011-2016), including the Helmstetter model. Overall, the inlabru model N-test results were

comparable to the Helmstetter model performance in the grid-based assessment and performed well at forecasting at least the

minimum number of events in all but the declustered models in the first testing period (table 2).295

5.2 Full- and declustered-catalogue models

We did not filter for mainshocks in the observed events, so we might expect the N-test results for the declustered models to do

poorly, but they were consistent with observed behaviour in 2 of the 3 tested time periods in both the grid-based and catalogue

testing. If we consider only the lower bound of the N-test, the declustered models pass the test in the full 2011-2021 time period

and only perform poorly in 2006-2011, a time period which arguably contained many more than average events (Figure 8).300

Similarly, the full catalogue models do poorly on the upper N-test in 2011-16 but otherwise pass in time windows with higher

numbers of events.

The declustered models pass spatial tests more often than the full catalogue models because they are less affected by recent

clustering, and perhaps benefit from being smoother overall than the full-catalogue models (Figure 3). The superior perfor-

mance of the declustered models may not have been entirely obvious had we tested only the 2006-2011 period and relied305

solely on the ‘pass’ criterion from the full suite of tests: only the full-catalogue synthetic catalogue forecast models get a pass

in all consistency tests in this time period. This highlights a need for forecast to be assessed over different timescales in order to

truly understand how well they perform, a point previously raised by Strader et al. (2017) when assessing the RELM forecasts,

and more generally embedded in the evaluation of forecasting power since the early calculations of Lorenz (1963) for a simple

but nonlinear model for Earth’s atmosphere in meteorological forecasting. .310

We conclude that neither a full nor declustered catalogue necessarily gives a better estimate of the future number of events

in any 5-year time-period, though the declustered models tend to perform better spatially, and may be more suitable for longer-

term forecasting. Given different declustering methods may retain different specific events and different total numbers of

events, different declustering approaches may lead to significant differences in model performances, especially in time periods

with a small number of events in the full catalogue. To truly discriminate between which approach is best, a much longer315

testing time frame would be needed to ensure a suitably large number of events.

5.3 Spatial performance of gridded and simulated catalogue forecasts

In general, the simulated catalogue-based forecasts were more likely to pass the tests than the gridded models. This is most

obvious in the first testing period, when the simulated catalogue-based models based on the full-catalogue passed all tests

and those for the declustered catalogues only fail due to the smaller expected number of events. Similarly, in the most recent320

testing period (2016-2021) the simulated-catalogue forecasts are able to just pass the S-test where all models fail in the gridded

approach.

The simulated catalogue approach allows us to consider more aspects of the uncertainty in our model. For example, we

could further improve upon this by considering potential variation in the b-value in the ensemble catalogues which arises from
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magnitude uncertainties, an issue that may be particularly relevant when dealing with homogenised earthquake catalogues325

(Griffin et al., 2020) or where the b-value of the catalogue is more uncertain (Herrmann and Marzocchi, 2020).

5.4 Roadmap - where next?

The main limitation of the work presented here, and many other forecast methodologies, is how aftershock events are handled.

Our choice of (a relatively high) magnitude threshold for modelling may have also benefited the full model by ignoring many

small magnitude events that would be removed by a formal declustering procedure. The real solution to this is to formally330

model the clustering process.

The approach presented here conforms strongly with current practice. In time-independent forecasting and PSHA, catalogues

are routinely declustered to be consistent with Poisson occurrence assumptions. Operational forecasting already relies heavily

on models such as the epidemic type aftershock sequence model(ETAS, Ogata (1988)) to handle aftershock clustering (Mar-

zocchi et al., 2014), but few attempts have been made to account for background spatial effects beyond a simple continuous335

Poisson rate. The exceptions to this are changes to the spatial components of ETAS models (Bach and Hainzl, 2012), the recent

developments in spatially-varying ETAS (Nandan et al., 2017) and extensions to the ETAS model that also incorporate spatial

covariates (Adelfio and Chiodi, 2020). However, the more versatile inlabru approach allows for more complex spatial models

than has yet been implemented with these approaches. The inlabru approach also provides a general framework to test the

importance of different covariates in the model, and a fully Bayesian method for forecast generation as we have implemented340

here.

One way to handle these conflicts is to model the seismicity formally as a Hawkes process, where the uncertainty in the

tradeoff between the background and clustered components is explicit and can be formally accounted for. In future work we

will modify the workflow of Figure 1 to test the hypothesis that this approach will improve the ability for inlabru to forecast

using both time-independent and time-dependent models.345

6 Conclusions

For the first time, we present time independent forecasts for California developed with inlabru. We developed three earthquake

forecasts for California considering different combinations of spatial covariates and developed with both the full and declus-

tered catalogue in each case, resulting in 6 models in total. These models each include spatial covariates that perform well in

retrospective testing of spatial seismicity, which are then extended to spatio-temporal models by considering the frequency-350

magnitude distribution and assuming a Poisson distribution of events in time. The full-catalogue models each pass the standard

CSEP tests for number, magnitude and spatial distribution, and perform favourably with the Helmstetter model tested in the

original RELM experiment over the 2006-2011 period, demonstrating the suitability of inlabru models for time-independent

earthquake forecasting. The declustered catalogues perform less well in this time period due to the lower expected number

of events, but perform better in spatial tests and overall in the 2011-2016 time period, where the full catalogue models over-355

estimate the number of events quite significantly. Neither the full-catalogue or declustered-catalogue models perform well in
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the most recent testing period, with much worse spatial performance. Simulated catalogue forecasts that make use of the full

posteriors of the model pass consistency tests more often than their grid-based equivalents by better accounting for uncertainty

in the model itself.
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1. Introduction
Following an earthquake, various postseismic mechanisms act to relax and redistribute stress concentrations in 
the crust and upper mantle (Freed, 2005). In addition to seismic aftershocks, postseismic mechanisms include 
aseismic afterslip (Bürgmann et al., 1997; Marone et al., 1991; Shen et al., 1994), pore fluid flow or poroelastic 
rebound (Peltzer et al., 1996, 1998; Piombo et al., 2005) and deeper viscoelastic relaxation or viscous flow (Deng 
et al., 1998; Freed & Lin, 2001; F. F. Pollitz et al., 2001). These processes may generate geodetically observable 
surface deformation (e.g., with GNSS, InSAR), which can be modeled to provide insight into fault zones, crustal 
structure, and the earthquake cycle (e.g., Ingleby & Wright, 2017; Massonnet et al., 1994).

Aseismic afterslip may provide particularly valuable insight into fault zone rheology and earthquake cycle 
processes (Avouac, 2015; Bürgmann, 2018). Afterslip is transient, fault scale, aseismic shear that occurs on and 
close to the fault planes of the parent earthquake, as postseismic readjustment (Avouac, 2015; Harris, 2017), 

Abstract Aseismic afterslip is postseismic fault sliding that may significantly redistribute crustal stresses 
and drive aftershock sequences. Afterslip is typically modeled through geodetic observations of surface 
deformation on a case-by-case basis, thus questions of how and why the afterslip moment varies between 
earthquakes remain largely unaddressed. We compile 148 afterslip studies following 53 Mw6.0–9.1 earthquakes, 
and formally analyze a subset of 88 well-constrained kinematic models. Afterslip and coseismic moments 
scale near-linearly, with a median Spearman's rank correlation coefficient (CC) of 0.91 after bootstrapping 
(95% range: 0.89–0.93). We infer that afterslip area and average slip scale with coseismic moment as 𝐴𝐴 𝐴𝐴

2∕3
𝑜𝑜  and 

𝐴𝐴 𝐴𝐴
1∕3
𝑜𝑜  , respectively. The ratio of afterslip to coseismic moment (Mrel) varies from <1% to >300% (interquartile 

range: 9%–32%). Mrel weakly correlates with Mo (CC: −0.21, attributed to a publication bias), rupture aspect 
ratio (CC: −0.31), and fault slip rate (CC: 0.26, treated as a proxy for fault maturity), indicating that these 
factors affect afterslip. Mrel does not correlate with mainshock dip, rake, or depth. Given the power-law decay 
of afterslip, we expected studies that started earlier and spanned longer timescales to capture more afterslip, but 
Mrel does not correlate with observation start time or duration. Because Mrel estimates for a single earthquake 
can vary by an order of magnitude, we propose that modeling uncertainty currently presents a challenge 
for systematic afterslip analysis. Standardizing modeling practices may improve model comparability, and 
eventually allow for predictive afterslip models that account for mainshock and fault zone factors to be 
incorporated into aftershock hazard models.

Plain Language Summary Afterslip is the gentle slipping, or sliding, of a fault over several months 
or years following an earthquake. Afterslip is not an earthquake but does release energy that may trigger 
other earthquakes, called aftershocks. Therefore, we wish to understand why some earthquakes produce much 
more afterslip than others. We compile and analyze 148 afterslip studies (following 53 earthquakes) from the 
literature and show that the amount of afterslip is mainly determined by the magnitude of the earthquake. 
However, there is considerable variation beyond this dependence which might be linked to characteristics of 
the earthquake and fault setting. We find that more afterslip tends to occur when the earthquake rupture is less 
elongated in shape, or when the causative fault has a greater long-term slip rate. However, different studies 
following the same earthquake sometimes yielded different moment estimates that we cannot explain. We 
propose that the unknowns and methodological differences in afterslip modeling currently make comparing 
events difficult; future methods should be more standardized so that afterslip can be meaningfully considered in 
hazard models following an earthquake.
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distinct from generally deeper and more distributed viscoelastic relaxation (K. Wang et  al.,  2012). Aseismic 
afterslip is also distinct from seismic aftershocks and is specifically a response to coseismic stress concentrations, 
thus is also a distinct mechanism from triggered slow slip, which is driven by stresses that have built up over 
longer timescales (Bürgmann, 2018). Afterslip is globally widespread and relatively easy to detect as the associ-
ated surface deformation is initially greater and more near-field than that caused by viscoelastic relaxation (Diao 
et al., 2014; Reilinger et al., 2000). There is also mounting evidence that afterslip may drive aftershock sequences 
(Bürgmann et al., 2002; Hsu et al., 2006; Huang et al., 2017; Peng & Zhao, 2009; Perfettini & Avouac, 2004), 
therefore it is highly desirable to better understand the phenomenon.

First order behaviors of afterslip, such as the scaling of afterslip moment with coseismic moment, are still poorly 
understood. Some existing studies have considered afterslip following multiple earthquakes but have been limited 
in scope. For example, Lange et al. (2014) compared afterslip models for three large subduction thrust events, 
whilst Hawthorne et al. (2016) and Alwahedi and Hawthorne (2019) analyzed afterslip following Mw < 5 Cali-
fornian earthquakes. Wimpenny et al. (2017) and Alwahedi and Hawthorne (2019) compiled afterslip moment 
estimates for approximately 30 global earthquakes and showed that relative afterslip moment (Mrel), defined as:

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟 =

𝑀𝑀
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜

𝑀𝑀𝑜𝑜

, (1)

where 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  is the afterslip moment and Mo is the coseismic moment, can vary by up to two orders of magnitude 
between different earthquakes. It is not clear what drives this, for example, can we explain why the similar-mag-
nitude El Mayor Cucapah and Landers earthquakes generated Mrel of 74% and 2%, respectively (Fialko, 2004; 
Rollins et al., 2015)? A global synthesis of studies is needed to better establish the average and outlying behaviors 
of afterslip and provide observational constraints for physical models.

We compile 148 aseismic afterslip studies that follow 53 Mw6.0–9.1 earthquakes from 1979 to 2018. Using a 
refined subset of 88 better-constrained kinematic afterslip models (after 46 earthquakes), we investigate whether 
afterslip and coseismic moment scale in a discernible way. We explore whether observed variability in Mrel 
depends on characteristics of the mainshock (moment, rake, dip, depth, rupture aspect), measures of local defor-
mation rate (fault slip rate, local strain rate, plate velocity), and data availability (the start date and duration of 
data collection). We discuss additional factors that are difficult to quantify and test statistically, including fault 
zone composition, earthquake history, and the influence of data availability and modeling methodology. We also 
investigate whether the occurrence of updip or downdip afterslip may be influenced by vertical rupture directiv-
ity, measured by a one-dimensional estimate. Determining what controls Mrel variation may offer new empirical 
constraints on afterslip, which could lead to improved predictive models of stress transfer for aftershock modeling 
and forecasting (Cattania et al., 2015; Mancini et al., 2020).

In Section 2, we outline the observations, kinematics, and a mechanical interpretation of afterslip and formu-
late hypotheses regarding the potential factors that Mrel might depend on, to later test. In Section 3, we explain 
our compilation and statistical methods and describe our database, which includes study and model meta-
data, and information on the mainshock and fault zone setting. This database is available online (doi:10.5281/
zenodo.6414330). We present our analysis of the database in Section 4 and discuss our findings in Section 5.

2. Background
2.1. Observations and Mechanical Interpretation

The kinematics of afterslip can be well approximated by combining a constitutive framework for shear strength (τ) 
at an interface with elastic theory (Rubin, 2008). Rate and state dependent friction describes τ and the conditions 
under which materials strengthen or weaken with an imposed velocity step (Dieterich, 1979, 1987; Ruina, 1983). 
The Dieterich-Ruina formulation gives τ as:

𝜏𝜏 = 𝜎𝜎

(
𝜇𝜇𝑜𝑜 + 𝑎𝑎 ln

𝑉𝑉

𝑉𝑉𝑜𝑜

+ 𝑏𝑏 ln
𝑉𝑉𝑜𝑜𝜃𝜃

𝐷𝐷𝑐𝑐

)
, (2)

where σ is the effective normal stress and μo is the friction coefficient when slip velocity (V) equals the reference 
velocity (Vo). The direct effect term (a ln(V/Vo)) describes an initial frictional strength increase and the evolution 
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term (b ln(Voθ/Dc)) describes a frictional strength reduction over slip distance and time, where Dc is the critical 
slip distance and θ is the state variable. a and b are empirical, dimensionless quantities weighing these terms. 
a − b expresses the velocity dependence of a material under given environmental conditions, including stress, 
temperature, slip velocity, and effects of fluids (Blanpied et al., 1991; Marone, 1998). a − b is depth-dependent 
(Blanpied et al., 1991), with distinct and strongly frictionally stable regions typically updip and downdip of the 
seismogenic zone, as shown in Figure 1a (e.g., Hillers et al., 2006; Imber et al., 2001). Rate and state dependent 
friction does not imply a microscale mechanism (Van den Ende et al., 2018), but one key interpretation of after-
slip is a brittle creep (e.g., Marone et al., 1991; Perfettini & Avouac, 2004).

In brittle creep interpretations, afterslip occurs principally in frictionally stable fault regions, where (a − b) > 0 
(Marone et al., 1991; Perfettini & Avouac, 2004). Here, seismic nucleation is prohibited and small increments of 
immediately-arrested brittle failure (Perfettini & Avouac, 2004) erode away at the stress concentrations left by an 
earthquake to produce aseismic, macroscale fault slip over time (Bürgmann, 2018; Harris, 1998). As the direct 
effect term dominates, afterslip can be approximated by a steady-state process (Marone et al., 1991; Scholz, 1998):

𝜏𝜏 = 𝜎𝜎

(
𝜇𝜇𝑜𝑜 + (𝑎𝑎 − 𝑏𝑏) ln

𝑉𝑉

𝑉𝑉𝑜𝑜

)
. (3)

Figure 1b shows an idealized schematic of coseismic rupture and afterslip on a well coupled strike slip fault. Here, 
coseismic rupture is mostly confined to the well-defined frictionally unstable seismogenic zone but may propagate 
into adjacent stable regions through dynamic weakening (Noda & Lapusta, 2013; Shaw & Wesnousky, 2008). 
Afterslip then migrates away from the rupture edges within the frictionally stable regions (Bie et al., 2014; Peng 
& Zhao, 2009), but some occurs at traditionally seismogenic depths due to rheological heterogeneity or condi-
tional stability. Afterslip has often been observed at traditionally seismogenic depths (e.g., Langbein et al., 2006; 
Reilinger et al., 2000; Riva et al., 2007), and thus is clearly not limited to distinct and strongly velocity-strength-
ening regions (Bürgmann et al., 2002; Helmstetter & Shaw, 2009). In the case of a poorly-coupled fault, such 
as the creeping section of the San Andreas (Bürgmann, 2018; Jolivet et al., 2015), isolated velocity-weakening 
rupture patches may exist within an overall more velocity strengthening fault. In another case, where fault mate-
rial is only weakly velocity-weakening or conditionally stable, where (a − b) ≈ 0 or <0, aseismic slip may occur 
if the slip velocities (Scholz, 1998) or the nucleation length scales (related to Dc; Boatwright & Cocco, 1996; 
Bürgmann, 2018; Rubin & Ampuero, 2005) required for seismic slip are not reached. In this case, the steady-state 

Figure 1. (a) A simplified frictional slip stability (a)–(b) profile with depth (modified from the study by Avouac [2015]; Bürgmann [2018]; Hillers et al. [2006]; 
Perfettini & Avouac [2007]), and (b), a schematic fault-parallel cross-section of idealized coseismic rupture and aseismic afterslip on a well-coupled strike slip fault. 
The approximate seismic-aseismic transition and brittle-viscous/ductile transitions are shown, but conditional stability is not shown for simplicity.
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approximation does not hold, and triggered slow slip events may also be common (Bürgmann, 2018; Rolandone 
et al., 2018; Taira et al., 2014; Wallace et al., 2018).

2.2. Afterslip and the Mainshock and Fault Setting

The nature of a scaling relationship between the afterslip moment and the coseismic moment is not well 
constrained. Establishing what the expected or average afterslip moment for a given earthquake should be would 
allow for more informed investigations into behavioral variation. Moment (Mo) is given by the product of shear 
modulus (G), average slip 𝐴𝐴

(
𝐷𝐷

)
 and slip area (A):

𝑀𝑀𝑜𝑜 = 𝐺𝐺𝐺𝐺𝐷𝐷𝐷 (4)

Coseismic ruptures are commonly assumed to scale self-similarly, whereby Mo, 𝐴𝐴 𝐷𝐷 and A grow in a consistent and 
scale-invariant way (e.g., Leonard, 2014; Wells & Coppersmith, 1994). Given this, and assuming that coseismic 
static stress change drives afterslip, we posit a monotonic relationship between afterslip and coseismic moments. 
Basic elastic theory predicts that the magnitude of stress change around a rupture and the area on the fault plane 
exposed to a given stress change increase with the coseismic moment (Segall, 2010). Therefore, assuming that 
shear modulus (G) remains approximately constant across seismogenic and afterslip zones, the average slip, area, 
and overall moment of afterslip should increase with the coseismic moment.

If Mrel is observed to vary, we can investigate factors that might drive this through testing the following hypothe-
ses. If a − b principally controls afterslip occurrence throughout the fault zone (e.g., Marone et al., 1991; Perfet-
tini & Avouac, 2004) and is largely controlled by temperature and depth (e.g., Blanpied et  al., 1991; Hillers 
et al., 2006; Imber et al., 2001), we hypothesize that low dip angle faults may permit more afterslip, by providing 
a greater area of unruptured fault in purely and conditionally frictionally stable regions. We also could expect 
a relationship with a rake, as this typically correlates with dip (Anderson, 1905). Again, assuming that a − b is 
depth controlled, we hypothesize that shallower earthquakes may permit more downdip, and therefore overall, 
afterslip. However, this is complicated by the fact that updip afterslip can occur and that deep ruptures might be 
required to activate deeper frictionally stable regions in the first place. Finally, Hawthorne et al. (2016) alluded to 
a potential link between rupture elongation and Mrel, thus we investigate the influence of coseismic moment and 
the aspect ratio (length to downdip width) of coseismic rupture on Mrel. We, therefore, investigate relationships 
between Mrel and mainshock moment, fault dip, rake, depth, and rupture aspect.

Rheology may vary across different fault zones. We hypothesize that mature faults might promote more after-
slip as they are suggested to contain higher proportions of velocity-strengthening materials like gouges and 
smoothed asperities (Choy & Kirby, 2004; Collettini et al., 2019; Ikari et al., 2011; Imber et al., 2008). Fluids or 
specific materials that might promote aseismic slip might also be present, such as the talc-bearing serpentinites 
in the creeping section of the San Andreas fault (Moore & Rymer, 2007) or well-connected phyllosilicate gouges 
(Niemeijer, 2018). We use measures of local deformation rate: fault slip rate (i.e., the long term rate at which a 
fault slips), local strain rate (i.e., how localized deformation is, a combination of fault zone width and slip rate), 
and plate velocity, as proxies for fault maturity and potential for abundant (a − b) >0 material, as there is evidence 
that factors such as fault slip rate are linked to maturity (e.g., Goldberg et al., 2020; Manighetti et al., 2007). We, 
therefore, investigate relationships between Mrel and fault slip rate, local strain rate, and plate velocity.

Certain additional factors that may influence Mrel cannot be easily statistically tested. For example, the size and 
shape of different coseismic ruptures can vary at the same fault patch throughout multiple earthquake cycles 
(e.g., Bakun et al., 2005; Jiang & Lapusta, 2016; Shaw & Wesnousky, 2008), which may influence subsequent 
postseismic behaviors, as indicated in some earthquake cycle simulations (e.g., Barbot et al., 2012). This implies 
that any single observed earthquake and afterslip episode may not reflect the average behavior of events at that 
fault. Additionally, the variable presence and role of conditionally stable regions across different faults may also 
drive variations in Mrel. This includes whether these regions are locked or creep interseismically, whether they can 
rupture coseismically, or whether they can fail in either or both spontaneous or triggered slow slip events (e.g., 
Scholz, 1998; Noda & Lapusta, 2013; M. Wei et al., 2013; Bürgmann, 2018). Finally, the interseismic coupling 
may be linked with Mrel through factors such as fault maturity, rheology, fluid pressure, and structural heteroge-
neity (Chaussard et al., 2015; Harris, 2017; Kaneko et al., 2010). A lack of reliable interseismic coupling estimate 
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at many host faults makes this difficult to evaluate but is desirable for the future. These factors will be discussed 
alongside the implications of our results in Section 5.2.

2.3. Methods and Limitations of Observation and Modeling

Our understanding of afterslip derives principally from geodetic observations of its surface deformation (Bürg-
mann, 2018). The broad types of data used to analyze afterslip are ground-based surveys (e.g., creep- and strain-
meters, etc.), GNSS (including GPS), InSAR, and satellite gravimetry. As these observation methods have abso-
lute detection thresholds, we expect a bias in the literature toward readily detectable afterslip episodes. This could 
manifest as an apparent dependence of Mrel on mainshock magnitude, as low Mrel following large earthquakes may 
be detectable, whereas low Mrel following smaller earthquakes may not. Additionally, the deformation signals of 
different postseismic mechanisms may be overlain and concurrent (Barbot & Fialko, 2010), making it difficult 
to distinguish their individual contributions (e.g., Biggs et al., 2009; Ryder et al., 2007). Separating the contribu-
tions of afterslip and viscoelastic relaxation becomes particularly difficult above mainshock magnitudes Mw6.5-
7, and the two processes can trade off strongly in models (e.g., Jacobs et al., 2002; Sun & Wang, 2015; Luo & 
Wang, 2021; M. Wang et al., 2021).

Afterslip moment estimates will be sensitive to the temporal window of observation. The steady-state approxima-
tion predicts afterslip velocity V at time t as:

𝑉𝑉 (𝑡𝑡) =
𝑉𝑉0

1 +
𝑡𝑡

𝐶𝐶

, (5)

where V0 is the initial velocity and C is a constant of decay. This approximation is well supported by observations, 
where the afterslip signal has a high onset amplitude (e.g., S. Wei et al., 2015; Tsang et al., 2019) and decays 
approximately with the inverse of time (e.g., Azúa et al., 2002; Ingleby & Wright, 2017; Marone, 1998; Perfettini 
& Avouac, 2004; Wennerberg & Sharp, 1997), and implies that the earliness and duration of study are crucial for 
capturing a representative afterslip signal.

Afterslip studies fall into three broad categories, each of which has different outputs and implications for this 
analysis. First, geodetic analyses are studies that typically fit decay equations to surface displacements (e.g., 
Savage & Svarc, 2009) or estimate the first-order spatial extent of afterslip (e.g., Ergintav et al., 2007), but do not 
produce a spatial distribution model of afterslip. Their conclusions regarding the spatial distribution of afterslip 
are generally qualitative and do not include a moment estimate. Kinematic slip modeling refers to studies that 
fit a spatial slip model to geodetic observations through dislocation theory (Okada, 1992; Segall, 2010). This 
may involve iterative forward modeling (e.g., Reilinger & Larsen, 1986) or explicit numerical inversion (e.g., L. 
Wang et al., 2009; Menke, 2018). Finally, dynamic slip modeling refers to studies that use a nonlinear inversion 
to constrain frictional parameters within frameworks such as the steady-state approximation. These can then 
produce a model of evolving afterslip from an initial postseismic stress field, which also satisfies geodetic obser-
vations (e.g., Johnson et al., 2009; Perfettini & Avouac, 2007). The inversion process is associated with consider-
able uncertainty arising from the validity of assumptions, inherent non-uniqueness, and regularization (Scales & 
Tenorio, 2001), discussed further in Section 5.3.

3. Data Compilation and Methods
3.1. Compilation From the Literature

We compile afterslip studies that follow Mw6.0 or greater earthquakes from 1979 onward, published until 2018 
(inclusive). We omit earthquakes before this due to poor data quality, notably excluding: the 1959 Hebgen 
Lake (Nishimura & Thatcher, 2003), the 1978 Tabas E Golshan (Copley, 2014), and the 1940 Imperial Valley 
(Reilinger, 1984) earthquakes. The inclusion of a study in our compilation is irrespective of whether additional 
postseismic mechanisms are considered, but we note when viscoelastic relaxation and pore fluid effects are 
considered or modeled.

We systematically extract information about the afterslip model(s) from each study. We identify each study's 
preferred afterslip model, proposed by the authors as the best compromise of physical sense and data fit and 
record the proposed moment, any bounds on this (from error analysis or viable alternative models), and the depth 
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extent of ‘most’ afterslip. The latter is approximate and often derived from qualitative discussions or inferred 
from figures, as digitized afterslip models are scarcely provided. We omit one-moment estimate from a study 
by Paul et al. (2007) because it considers only a proportion of the total spatial extent of afterslip and would not 
be comparable. If multiple viable models are proposed without a strong preference, we average the proposed 
moments. For magnitude-moment conversions we use Hanks and Kanamori (1979), where Mo is in N m (Nm):

�� =
(

log10 �� − 9.05
)

∕1.5. (6)

We assume that a significant deformation signal related to aftershocks has been removed (e.g., Hoffmann 
et al., 2018; Howell et al., 2017) or is negligible (e.g., Barnhart et al., 2016; Béjar-Pizarro et al., 2010). However, 
seismic afterslip and aftershocks are not treated as separate mechanisms in some studies. To consistently consider 
only aseismic afterslip, we reduce the moment estimates of Donnellan et al. (2002), Gahalaut et al. (2008), and 
Shrivastava et al. (2016) by 13%, 47%, and 10%, respectively, which they explicitly gave as the seismic propor-
tions of their afterslip moment estimates.

We record data and modeling information for each study. This includes the data type(s) used, the start and end 
time of observation (converted to an approximate number of days since mainshock), the broad modeling type, 
and many individual modeling choices, where possible (see supplementary materials or database for detail). We 
assume a start time of 1 day when one is not explicitly given, as these are generally continuous GPS studies, 
and/or we assume that longer delays between the parent earthquake and data collection would be mentioned 
explicitly. Some studies also account for early missing afterslip by extrapolation (e.g., D’Agostino et al., 2012; 
Perfettini et al., 2010) or by estimating how much afterslip is contained within the coseismic model (e.g., Hutton 
et al., 2001), and we use these estimates.

3.2. Compilation of Mainshock Data

We compile mainshock information from global earthquake catalogs. For each earthquake, we record the 
moment, magnitude, longitude, latitude, depth, dip, and rake from the preferred W-phase moment tensor (Mww) 
solution of the USGS ComCat database (U.S. Geological Survey, 2017) and from the Global Centroid Moment 
Tensor (GCMT) catalog (Dziewonski et al., 1981; Ekström et al., 2012). In this study, we do not need to distin-
guish between left and right-lateral strike slip, thus we convert the circular rake values to semi-circular values, 
with normal and thrust faulting as endmembers and strike slip in between. To deduce the correct fault plane from 
the two nodal planes of each focal mechanism, we use figures and dip and strike values given in the compiled 
literature. We obtain a hypocentral depth and an approximate coseismic slip depth extent, bounded by at least 
1 cm of slip, from coseismic slip models in the Earthquake Source Model database: SRCMOD (Mai & Thingbai-
jam, 2014). We use slip models by Hayes (2017) where possible, but otherwise choose a simple, preferably single 
fault plane model to be as systematic as possible.

In most cases, we use the USGS ComCat preferred solution's seismic moment as the ‘driving’ moment of afters-
lip. However, for the following cases where the mainshock is ambiguous to define (i.e., mainshock sequences), we 
use a summed driving moment: (a) the six Mw5.2–6.3 1994 Sefidabeh earthquakes, (b) the two Mw6.5 2000 South 
Iceland earthquakes, (c) the Mw7.1 2005 Miyagi mainshock and its Mw6.6 aftershock, after Miura et al. (2006), (d) 
the entire 2009 Karonga swarm, as given by Hamiel et al. (2012), (e) the Mw8.1 and Mw8.3 2006/7 Kuril islands 
earthquakes, and (f) the Mw5.7 and Mw6.0 1997 Umbria-Marche earthquakes. We divide each afterslip moment 
estimate by the driving moment to obtain Mrel.

3.3. Compilation of Tectonic Data

We obtain tectonic and fault setting information for each earthquake from external, global data sets. We identify 
the major fault closest to each mainshock hypocenter in the Global Earthquake Model Foundation (GEM) global 
active faults database (Styron & Pagani, 2020) and extract the net fault slip rate (i.e., long term average value in 
the direction of maximum displacement) for each earthquake from the GEM data-base. We calculate the second 
invariant of the strain rate tensor closest to the mainshock hypocenter from Kreemer et al. (2014) for continental 
events. For subduction events, the projection of the hypocenter to the surface is generally far from the fault trace 
which caused issues in selecting a representative strain rate value systematically. Instead, we obtain a value for 
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plate velocity from the GEM Strain Rate Model: GSRM 2.1 (Kreemer et al., 2014; UNAVCO, 2021) at the hypo-
central location of each earthquake, as this is more meaningful.

3.4. Statistical Tests

We investigate variations in absolute and relative afterslip moment and test for correlations between relative after-
slip moment and various factors. We compile 95 moment estimates from individual studies, but formally analyze 
a slightly reduced data set of 88 well-constrained kinematic slip model estimates that follow 46 earthquakes. This 
small reduction ensures standardization and comparability between the models we analyze.

As there are multiple moment estimates for some events, we bootstrap to fairly sample data and robustly test 
correlations. For each test, we create 2000 subsets of data, each with one randomly sampled estimate for every 
earthquake (n = 46, the number of earthquakes and data points of each subset). We calculate Spearman's rank 
correlation coefficient between each subset and the characteristic we are testing and present the median value 
and 95% range of the distribution. We use Spearman's rank to test for monotonic relationships (Dodge, 2008), as 
testing specifically for linearity (i.e., Pearson's) may miss complex, nonlinear relationships and could be dispro-
portionately affected by outliers in our data. As the bootstrapped distributions are not necessarily Gaussian, we 
use the median and 95% range rather than the mean and standard deviation, which could be less representative 
and more sensitive to outlying values. As our correlation coefficients are based on rank rather than absolute value, 
we cannot provide a data-fit or measure of an error on individual coefficients, thus our statistical measures do less 
well at reflecting the additional uncertainty in individual moment estimates, but we discuss these uncertainties 
further in Section 4.3. We interpret a result as statistically interesting if the entire 95% range does not cross the 
zero coefficient line.

We use reduced data sets with specific criteria to further probe the relationships between 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  and Mo, and Mrel 
and Mo. The following reduced data sets contain one estimate per earthquake and do not need bootstrapping: 
(a) the model with the longest duration for each earthquake (n = 45), (b) the largest afterslip moment estimate 
for each earthquake (n = 45), and (c) the longest duration model that also starts within 1 day of the earthquake 
(n = 32). Data set 3 is further refined as (e) removing the two outlying Mrel endmembers (n = 30), (f) including 
only subduction events (n = 17), and (g) including only earthquakes Mw7.0 or greater. The Sefidabeh study by 
Copley (2014) is an extreme outlier in terms of the start time (more than 2 years), that we omit in all of these 
reduced data sets.

4. Results
4.1. The Database

The database contains 148 studies of afterslip following 53 mainshocks (doi:10.5281/zenodo.6414330). The 
earthquakes span Mw 6.0–9.1 and comprise 32 thrust, 14 strike-slip, and 7 normal mechanisms (Figure  2a). 
Analysis of the GCMT catalog indicates that the database contains 100% of the Mw9 earthquakes that occurred 
during the study period, 32% of Mw8, 4% of Mw7, and less than 1% of Mw6 earthquakes. Smaller earthquakes are 
underrepresented in our compilation and those included may have a bias toward higher Mrel due to more readily 
detectable afterslip.

Studies vary in data practices and modeling methodologies. Overall, we categorize 18 geodetic analyses, 117 
kinematic slip models, and 13 dynamic slip models. Approximately 41% of all studies considered only afterslip 
as a viable postseismic mechanism, 32% considered afterslip and viscoelastic relaxation, 3% considered afterslip 
and pore fluid factors, and 24% considered all three mechanisms. Figure 2b shows InSAR emerging and GNSS 
becoming dominant in the 1990s, with gravity-based methods emerging more recently and ground-based surveys 
scarcely used this century.

The database contains multiple afterslip studies for some earthquakes, although not every study proposes a 
moment estimate. There are multiple studies for 32 mainshocks, as shown in Figure  2c, and six particularly 
well-studied examples: Mw7.1 1999 Hector Mine (6 studies), Mw6.0 2004 Parkfield (7), Mw7.6 1999 Izmit (9), 
Mw9.1 2011 Tohoku (9), Mw9.1 2004 Sumatra (10) and Mw7.3 1992 Landers (11). Overall, 95 studies provide 
a meaningful afterslip moment estimate as geodetic analyses generally cannot estimate moment and many 

https://doi.org/10.5281/zenodo.6414330
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kinematic and dynamic slip models do not explicitly calculate or give one. Eighty eight moment estimates come 
from kinematic slip models, whose methodologies are better constrained and thus more comparable.

The start times and durations of all studies are summarized in Figure 3, ordered by the mainshock. If afterslip 
velocities decay according to Equation 5 and this is linearly proportional to moment release rate, the cumulative 
moment release should be proportional to the logarithm of time, thus we present logarithmic time on the x-axis. 
Most studies start within a few days of the mainshock, with approximately 1 day being the soonest and 2 years 
being the latest, and typically last for several months to around 2 years, with approximately 1 day being the 

Figure 2. (a) The Global Centroid Moment Tensor focal mechanism solutions of the earthquakes in our database (red: strike slip, blue: thrust, yellow: normal, * 
indicates a mainshock sequence with the largest event shown). (b) The cumulative number of compiled studies is shown by year of mainshock and year of publication, 
and the cumulative use of data types by year of publication. (c) The frequency of studies per mainshock, with the most-represented mainshocks, annotated, 
corresponding to large steps in panel (b).
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Figure 3. Temporal observation windows for all compiled studies, where available. The line length indicates the base-10 logarithmic duration and the color gives linear 
duration. Dashed lines indicate studies without an explicitly provided start time, which we assume is 1-day as most are continuous GPS.
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shortest and 12 years being the longest. We explore the relationship between Mrel estimates and the start time and 
duration of observation in Sections 4.3 and 4.4 and discuss our findings in 5.3.

4.2. Afterslip Moment Scaling and Variation

Figure 4a gives afterslip moment estimates against the corresponding coseismic moment. For the 88 kinematic 
slip model estimates, the median Spearman's rank correlation coefficient between 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  and Mo is 0.91 after 
bootstrapping, with the 95% range between 0.89 and 0.93 (Figure 4a). This supports the hypothesis that aseismic 
afterslip moment scales with coseismic moment. We also note that the median Pearson's correlation coefficient 
between 𝐴𝐴 log

(
𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜

)
 and log(Mo) is 0.92 after bootstrapping, with a gradient close to one. We infer near-linear 

scaling of the afterslip moment with the coseismic moment for our mainshocks, which we discuss further in 
Section 5.1.

The 95% range of Spearman's rank correlation coefficients better reflects variation due to bootstrapping than the 
variations in individual afterslip moment estimates. We analyze the uncertainty in some individual estimates in 
Section 4.3, but further test the robustness of the 𝐴𝐴 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  /Mo correlation by examining the reduced data sets defined 
in Section 3.4. These correlation coefficients range from 0.85 to 0.93, shown in Figure 5a, which is close to that 
obtained by bootstrapping over the entire data set, further supporting a robust and strong relationship.

Relative afterslip moment (Mrel) varies over three orders of magnitude from <1% to >300% (Figure 4b). The 
median value for the 88 kinematic slip model estimates is 18% with an interquartile range of 9%–32%. Endmem-
bers include two estimates below 1%: the Mw7.2 2003 Altai earthquake (Barbot et al., 2008) and the Mw8.0 2008 
Sichuan earthquake (Shao et al., 2011), and five greater than 100%: the Mw6.0 2004 Parkfield earthquake (Bruhat 
et al., 2011; Freed, 2007; Johanson et al., 2006; Langbein et al., 2006) and the Mw6.8 2008 Methoni earthquake 
(Howell et al., 2017).

Figure 4. (a) Afterslip moment estimates against corresponding coseismic moments (𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  vs. Mo) and (b) relative afterslip moment estimates against coseismic 
moment (Mrel vs. Mo). The color scale shows the linear temporal duration of each model. Red bars link estimates for the same earthquake from different studies. The 88 
circles denote the kinematic slip model estimates (KSMs) that are analyzed further. Relative afterslip moment estimates <1% and >100% are labeled.
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Mrel weakly and negatively correlates with the mainshock moment. The median Spearman's rank correlation coef-
ficient for Mrel and Mo is −0.21 after bootstrapping, with the 95% range from −0.32 to −0.09. This could suggest 
that larger earthquakes are prone to less Mrel, but this may be due to the publication bias, and is discussed further 
in Section 5.2. Correlation coefficients from the reduced data sets vary from −0.11 to −0.49 (see Figure 5a), 
likely because the data sets are smaller and thus less stable. The most outlying coefficient (−0.49) is from the 
smallest data set (n = 17), and removing a single outlying data point (for the Mw6.8 2008 Methoni earthquake) 
highlights this instability as the correlation coefficient falls from −0.49 to −0.38. As the overall correlation 

between Mrel and Mo is much weaker than between 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  and Mo, this moti-
vates the investigation of other factors to account for variability in Mrel.

4.3. Temporal Dependence and Uncertainty of Individual Mrel 
Estimates

Figure  6 shows the relationship between estimates of relative afterslip 
moment and the start time and duration of observation. The median Spear-
man's rank correlation coefficients after bootstrapping are −0.13 and 0.03, 
respectively, with 95% ranges of −0.24 to 0.00 and −0.09 to 0.16, respec-
tively (Figure 5), indicating that across the data, there is no strong relation-
ship between Mrel and observation start time and duration. This is surprising, 
given the theoretical temporal decay of afterslip: early and longer observation 
windows should result in greater afterslip moment estimates. We discuss the 
implications of this in Section 5.3.

Figure 7 shows that different afterslip moment estimates following the same 
earthquake can vary considerably. If differences in observation start time 
and duration cannot explain these differences, this would imply significant 

Figure 5. Median Spearman's rank correlation coefficients and 95% ranges for relationships tested. n = 46, with 88 data points bootstrapped over throughout, unless 
specified. (a) Absolute and relative afterslip moment against the coseismic moment. The correlation coefficients for reduced data sets are also shown, which do not 
require bootstrapping as there is only one data point per earthquake (n is given individually) and (b) relative afterslip moment against our tested metrics. The rake value 
is calculated slightly differently and is explained in Section 4.4.

Figure 6. Observation start times and durations for all 88 kinematic afterslip 
models with relative afterslip moment estimates (Mrel), are shown in color. 
Models with start times given before or on day one are shown at 1-day, models 
without an explicitly provided start time begin on day 1.
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modeling uncertainty. We analyze 10 earthquakes that have at least three afterslip moment estimates from differ-
ent kinematic slip model studies. Estimates are normalized to the largest value for each earthquake to highlight 
the relative spread. We also present an expected, theoretical case in which afterslip is fully captured following an 
idealized earthquake by studies of different durations. To calculate this, we assume that afterslip velocity (Equa-
tion 5) linearly relates to the afterslip moment release rate, thus the integral with respect to time gives moment 
release. We assume the initial rate and constant c both equal one for simplicity and normalize to one unit of 
afterslip at 2,500 days to attain this idealized case.

For four earthquakes, the relative spread in individual afterslip moment estimates can be explained by differences 
in the temporal observation window. Afterslip moment estimates for the Mw7.6 1999 Izmit and the Mw7.6 1999 
Chi-Chi earthquakes are relatively well-constrained within a factor of 2 (Figure 7), with larger estimates corre-
sponding to increased observation duration or decreased observation start time. More varied afterslip moment 
estimates follow the Mw8.2 2003 Tokachi Oki earthquake (varying by up to a factor of approximately 5) but corre-
spond with the duration of observation. Similarly, following the Mw8.0 2008 Sichuan earthquake, the smallest 
afterslip moment estimate is only 3% of the largest but corresponds to an observation duration of approximately 
two weeks compared to seven years. Both the theoretical and Sichuan case are normalized to one unit of afterslip 
at approximately 2,500 days, thus differences could be interpreted as (a) afterslip decaying faster after the Sichuan 
earthquake than the theoretical case, (b) the largest Sichuan estimate is erroneously high, (c) the two smaller 
Sichuan estimates are erroneously low, or (d) a combination.

For six earthquakes, the relative spread in individual afterslip moment estimates cannot be easily explained by 
differences in the temporal observation window. In two cases: the Mw8.0 2011 Van and the Mw8.3 2015 Illapel 
earthquakes, afterslip moment estimates are relatively well-constrained by a factor of approximately two, but 
there are four cases where the relative spread is considerably greater: the Mw6.0 2004 Parkfield, the Mw7.8 2015 
Gorkha, the Mw9.1 2011 Tohoku and Mw9.1 2004 Sumatra earthquakes. For example, following the Sumatra 
earthquake, the two longest duration studies produced afterslip moment estimates of approximately only 6% of 
the largest and 10% of the second largest (both of which happened to be among the shortest duration studies). This 

Figure 7. Afterslip moment estimates of the 10 mainshocks which have three or more kinematic slip model estimates. For each earthquake (shown across the X-axis), 
different afterslip moment estimates are shown as bars, normalised to the largest and arranged from smallest to largest (scale is given on the left Y-axis). The start 
time of the data used for each estimate is given by red circles (right Y-axis) and the duration is given by color. A theoretical case of how the afterslip moment should 
grow with time (based on an assumed steady-state, velocity-strengthening decay behavior) is also shown for comparison. Here, estimates from different durations over 
which data were analyzed are shown in ascending order, reaching 1.0 at 2,500 days. Moment estimates of the Sichuan earthquake, for example, appear to follow the 
expected trend if afterslip estimates were solely determined by duration and onset of the analyzed dataset, whereas Parkfield estimates do not follow the expected trend, 
suggesting other modeling sources of uncertainty.



Journal of Geophysical Research: Solid Earth

CHURCHILL ET AL.

10.1029/2021JB023897

13 of 24

indicates that an individual afterslip moment estimate may be more than an order of magnitude too small or too 
large (i.e., <10 to >1000%). The extreme variation following the Tohoku and Sumatra earthquakes is surprising 
as these are among the best-studied earthquakes and postseismic periods, and also suggests that uncertainty does 
not decrease with the coseismic moment. As six out of the 10 examples analyzed show spread in afterslip moment 
estimates which cannot be easily attributed to differences in observation start time or duration, we conclude that 
there is significant uncertainty associated with the modeling process.

This analysis indicates that the relative uncertainty in afterslip moment estimates can obscure the dependence we 
expect to see from either the observation start time or duration. For this reason, we do not attempt to normalize 
afterslip moment estimates for observational time window and instead consider individual afterslip moment 
estimates as given, but recognize potential for substantial uncertainty. Using the 10 analyzed earthquakes, we 
can assess the uncertainty of a typical afterslip moment estimate. The average mean and average variance of 
these 10 groups of estimates (each relative to the largest) is 0.62 and 0.1, respectively. Assuming, therefore, 
that a given afterslip moment estimate is 0.62 ± 0.1 of a full population of estimates, and that the best estimate 
solution lies somewhere in that population, the given estimate is likely within a factor of ∼two or three of the 
best estimate solution. However, in the most extreme case (as illustrated by the Mw9.1 2004 Sumatra earthquake) 
estimates could be out by an order of magnitude. The sources and implications of this uncertainty are discussed 
in Section 5.3.

4.4. Factors Contributing to Mrel Variation

We investigate potential controls on relative afterslip moment by testing the hypotheses formed in Sections 2.2 
and 2.3. Figure 5b summarizes the median Spearman's correlation coefficients between Mrel and our testable 
metrics after bootstrapping. These coefficients range from near zero to |0.39|, a weak to moderate correlation. 
The 95% ranges vary in width and reflect the full distribution of correlation coefficients from bootstrapping to 
indicate a sense of the robustness of the relationship.

Figure 8 shows Mrel against mainshock rake, fault dip, depth, and rupture aspect ratio. The correlation coefficients 
between Mrel and the vertical component of rake and dip are 0.01 and −0.12 (Figures 8a and 8b), respectively, 
with both 95% ranges crossing the zero coefficient baseline, indicating no obvious control on afterslip (GCMT 
and USGS rake and dip values were very similar). Whilst we show the actual rake value in Figure 8a, we test 
adjusted (semi-circular not circular) values whereby thrust and normal mechanisms are endmembers and strike 
slip sits in between (i.e., right and left lateral slip are treated the same in the context of our hypothesis).

Mrel correlates with rupture aspect ratio but not with mainshock depth (Figures 8c and 8d). The median Spear-
man's rank correlation coefficients are −0.04 and 0.01 for the USGS and GCMT depths, respectively, indicating 
no obvious control on Mrel. Figure 8d shows the approximate length-to-width rupture aspect ratio against Mrel 
for the 33 earthquakes for which a coseismic slip model was available. The associated median bootstrapped 
Spearman's rank correlation coefficient is a moderate −0.31 and has a 95% range entirely negative. As continen-
tal and subduction earthquake populations might behave differently in terms of aspect ratio (e.g., Ampuero & 
Mao, 2017), we also calculate the correlation coefficients for continental (−0.34) and subduction (−0.24) popu-
lations individually, but these are quite similar to one another and the overall average.

Figure 9 shows Mrel against the local strain rate, plate velocity, and fault slip rate. These have correlation coeffi-
cients of 0.09, 0.39, and 0.26, respectively. The 95% ranges for the more strongly correlated plate velocity and 
fault slip rate relationships are also entirely above zero. The moderate relationship with plate velocity is for only 
18 events on subduction interfaces, thus having less scope for interpretation as the fewer data points mean a less 
robust coefficient. However, the moderate relationship with fault slip rate is over the entire kinematic slip model 
data set of 46 earthquakes and 88 estimates, implying some robustness.

4.5. Afterslip Depth Analysis

We investigate whether the occurrence of up- or downdip afterslip may be influenced by vertical rupture direc-
tivity, using the simple, one-dimensional proxy of whether an earthquake's centroid is above or below the hypo-
center. We conduct this analysis for 31 earthquakes for which we have: approximate afterslip and coseismic depth 
extents, hypocenter depths, and centroid depths. Figure 10 shows that in at least one study for each earthquake, 
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afterslip and coseismic slip depths overlap by at least one km. We cannot comment on whether specific slip 
patches overlap, as this could be due to afterslip and coseismic slip distributions varying laterally. However, 
this at least indicates that rheological heterogeneity (i.e., deviations from simple, one-dimensional slip stability 

Figure 8. Relative afterslip moment (Mrel) against (a) mainshock fault plane rake (we test the vertical component of rake, median Spearman's rank correlation 
coefficient: 0.01), (b) mainshock fault dip (−0.12), (c) mainshock centroid depth (0.04), and (d) approximate rupture aspect ratio (−0.31). a and b show USGS preferred 
solution moment tensor values, c shows Global Centroid Moment Tensor centroid depth values, and d uses models from the Earthquake Source Model Database 
(SRCMOD, for the 33 available events only). Red lines connect different estimates from the same earthquake and color indicates the temporal duration of each study.
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models with constant depths, Figure 1) may be quite common in fault zones, especially as there is evidence of 
afterslip occurring throughout the entire coseismic slip depth range for approximately a third of the earthquakes 
in this analysis.

The relative depths of the centroid and hypocenter do not appear to influence the depth extent of afterslip. Twelve 
earthquakes have a hypocenter at least one km deeper than centroid, which we describe as net-updip propagating. 
Six of these earthquakes show some evidence of afterslip significantly above coseismic rupture depths, whilst six 
do not. Additionally, five earthquakes that cannot be described as net-updip propagating also show evidence of 
significant updip afterslip. At a threshold of five km, only five earthquakes qualify as net-updip propagating and 
only two of these show evidence of significant afterslip updip of coseismic rupture.

Figure 9. Relative afterslip moment (Mrel) against (a) local strain rate for the 28 continental-setting events (median Spearman's rank correlation coefficient: 0.09), (b) 
plate velocity for the 18 events broadly on a subduction interface (0.39) and (c) local fault slip rate for all 46 events (0.26). Red lines connect different estimates from 
the same earthquake.

Figure 10. The approximate depth extents of aseismic afterslip for the 88 kinematic slip models studies and corresponding coseismic ruptures from SRCMOD 
coseismic slip models. Moment tensor depths from the USGS preferred solution, centroid depths from the Global Centroid Moment Tensor catalog, and rupture aspect 
ratios and hypocentral depths from SRCMOD coseismic slip models are also shown but may be erroneous in some cases (e.g., default values, not relocated). Not all 
afterslip depth extents, coseismic depth extents, hypocentral depths and rupture aspect ratios were available.
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Fourteen earthquakes have a hypocenter at least 1 km shallower than the centroid (net-downdip propagating). 
Nine of these show some evidence of significant afterslip below coseismic rupture depths, but five do not. Simi-
larly, seven earthquakes that cannot be described as net-downdip propagating also show evidence of significant 
downdip afterslip. Again, at a threshold of 5 km, only five earthquakes can be described as net-downdip propagat-
ing and only two of these show evidence of significant afterslip downdip of coseismic rupture. We, therefore, find 
no evidence that rupture directivity effects afterslip depth distribution, but our analysis is only one-dimensional; 
effective slip analysis would be useful for more insight here, but digitized afterslip models are scarcely provided.

5. Discussion
5.1. Afterslip and Coseismic Moment Scaling

We find that afterslip and coseismic moment scale approximately linearly, with a gradient close to one. We 
explore what this finding might mean for the average slip and area of afterslip, through assumptions grounded in 
elastic theory and self-similar rupture scaling. Whilst Mrel is distributed with an interquartile range of 0.09–0.32, 
to form a simple argument, we assume that Mrel can be approximated by a constant and rewrite Equation 1 as:

𝑀𝑀
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜 = 𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀𝑜𝑜. (7)

We can substitute Equation 4 into 7 and assume that the shear modulus (G) remains approximately constant 
across the seismogenic and afterslip zones when compared to variations in A and 𝐴𝐴 𝐷𝐷 . The average slip 𝐴𝐴

(
𝐷𝐷

𝑎𝑎𝑎𝑎𝑎𝑎
)
 and 

area (A aft) of afterslip thus scale as:

𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝐷𝐷
𝑎𝑎𝑎𝑎𝑎𝑎

∼ 𝐴𝐴𝐷𝐷 ∼ 𝑀𝑀𝑜𝑜. (8)

We can consider the scaling of A aft and 𝐴𝐴 𝐷𝐷
𝑎𝑎𝑎𝑎𝑎𝑎

 separately, by first considering an ‘activated area’ around a rupture 
that is primed for afterslip. For a simple circular rupture, stress change decays as the inverse of the distance cubed 
from the dislocation (Segall, 2010). Assuming that afterslip is entirely driven by coseismic static stress change, 
the distance (d aft) to the minimum activating shear stress bounding the activated area (A aft) scales with Mo as:

𝑑𝑑
𝑎𝑎𝑎𝑎𝑎𝑎 ∼ 𝑀𝑀

1∕3
𝑜𝑜 , (9)

(Marsan, 2005). Squaring the equation gives an area A aft that scales as:

𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎 ∼ 𝑀𝑀

2∕3
𝑜𝑜 , (10)

with proof given in the supplementary materials. Given Equation 8, 𝐴𝐴 𝐷𝐷
𝑎𝑎𝑎𝑎𝑎𝑎

 must therefore scale as:

𝐷𝐷
𝑎𝑎𝑎𝑎𝑎𝑎

∼ 𝑀𝑀
1∕3
𝑜𝑜 . (11)

Our empirical finding (Equation 7) also allows us to substitute 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜  into Equations 10 and 11 in the place of Mo 
(although the constants of proportionality change):

𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎 ∼ 𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜

2∕3
, (12)

𝐷𝐷
𝑎𝑎𝑎𝑎𝑎𝑎

∼ 𝑀𝑀
𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑜

1∕3
. (13)

Equations 12 and 13 refer to afterslip area, slip, and moment, but are essentially equivalent to well established 
coseismic scaling relations (e.g., Allen & Hayes,  2017; Blaser et  al.,  2010; Hanks & Bakun,  2002; Leon-
ard, 2010, 2014; Murotani et al., 2013; Skarlatoudis et al., 2016; Somerville et al., 1999; Strasser et al., 2010; 
Wells & Coppersmith, 1994). Interestingly, Michel et al. (2019) also proposed that the area of slow slip events 
follow a relationship equivalent to Equation 12, implying that the area of afterslip and generic slow slip events 
may scale similarly.

We propose that the afterslip area and average slip approximately obey the scaling relations given by Equa-
tions 10 and 11. Afterslip moment grows by a combination of coseismic area and average slip, thus with the 
overall coseismic moment. We believe these scaling relations provide a good first order approximation of afterslip 
behavior, around which secondary factors can cause variation. Our results indicate that characteristics such as 
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rupture aspect ratio and fault slip rate (a potential proxy for fault zone maturity and composition) may influence 
Mrel and therefore cause systematic deviations from this scaling.

5.2. Mainshock and Fault Setting Factors

In this section, we discuss the potential influences of mainshock characteristics, fault setting, and the broader 
earthquake cycle on Mrel. We expect that afterslip occurrence is driven principally by how strongly and how much 
of the fault zone interface is velocity-strengthening (a − b < 0), and that a − b is largely controlled by depth.

We find no evidence to support strong relationships between Mrel and mainshock rake, dip, or depth. This indicates 
that globally, neither mechanism nor depth overwhelmingly affects the afterslip moment and that our original 
hypothesis (that shallow ruptures and low fault dip angles may allow more afterslip) is not supported. However, 
our metrics may be overly simplistic or too insensitive to serve as good proxies for mainshock geometry, as they 
do not consider rupture shape, fault roughness, or kinks. It is also possible that any relationship is obscured by 
data or modeling uncertainties, which we discuss in Section 5.3.

The rupture aspect ratio may be a second-order control on afterslip. The correlation coefficient between Mrel and 
rupture aspect ratio is moderate −0.31, with an entirely negative 95% range. Rupture aspect ratio depends on char-
acteristics such as nucleation area, local seismogenic thickness, and whether an earthquake is sufficiently large to 
interact with the edges of the seismogenic zone (Ampuero & Mao, 2017; Weng & Yang, 2017), thus is inherently 
linked to coseismic moment. This is seen in Figure 10, in which the largest rupture aspect ratios belong to larger 
continental earthquakes, which generally saturate the seismogenic zone around Mw6-7 (Hawthorne et al., 2016) 
and then elongate with increasing magnitude. Subduction interface events generally occur on much wider and 
lower dip angle faults (Anderson, 1905), thus form a separate population of rupture aspect ratios in Figure 10, but 
the overall relationship is still seen. The correlation coefficients between Mrel and rupture aspect ratio for conti-
nental- and subduction-only event populations are −0.34 and −0.24, respectively, similar to the overall value.

A relationship between rupture aspect ratio and Mrel may have more than one explanation. Hawthorne et al. (2016) 
suggested that larger, elongated ruptures may have a reduced capacity for relative afterslip compared to smaller, 
less elongated earthquakes, because of the relative size of the region surrounding the coseismic rupture that can 
undergo afterslip. Smaller and less elongate earthquakes may also generate more of their afterslip closer to the 
rheologically controlled seismic-aseismic transition, which has greater scope to vary from location to location, 
than larger, more elongate ruptures which generate more of their afterslip closer to the temperature-controlled 
brittle-ductile transition. However, this argument assumes that the seismic-aseismic transition is consistently 
above the brittle-ductile transition, which may not hold everywhere. A greater scope for relative afterslip varia-
bility in smaller earthquakes, combined with a publication bias whereby smaller earthquakes with larger Mrel are 
preferentially studied, provides one explanation for the relationship we observe but implies that it is (at least in 
part) due to the publication bias. The dependence of shear stress change on rupture stress drop (Segall, 2010) may 
provide an alternative, physical argument. For the same coseismic moment, a larger area and presumably more 
elongated rupture will have a lower stress drop, and thus a smaller average stress concentration at its edges than 
a less elongated, more compact earthquake. Assuming that afterslip occurs generally downdip, this could imply 
that less elongate ruptures are able to generate more (downdip) afterslip than more elongate ruptures. Whilst 
rupture aspect ratio is not independent of the coseismic moment, Mrel is more strongly correlated to rupture aspect 
ratio than it is to Mo, suggesting that rupture aspect ratio may provide some independent control on afterslip, 
although the specific reasoning is unclear.

Mrel correlates moderately with plate velocity and fault slip rate. Plate velocity, local strain rate, and fault slip rate 
are measures of deformation rate that we treat as proxies for fault maturity and high proportions of frictionally 
stable fault zone materials such as gouges and smoothed asperities (Choy & Kirby, 2004; Ikari et al., 2011). The 
moderate correlation between Mrel and plate velocity (0.39) is based on only 18 subduction interface earthquakes 
and is thus not particularly robust. The correlation between Mrel and strain rate for the remaining 28 continental 
events is a weak 0.09. The most significant finding is the moderate correlation between Mrel and fault slip rate 
(0.26) over the entire data set. Some geological evidence supports fault slip rate as a proxy for fault maturity (e.g., 
Goldberg et al., 2020; Manighetti et al., 2007), whilst reported slip rates may inadvertently be a good proxy of 
fault maturity, as measurements at immature faults may be systematically underestimated because the strain is 
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less localized (Dolan & Haravitch, 2014). Regardless, the reported fault slip rate may be a reasonable first order 
proxy for maturity, and a weak to moderate indicator of Mrel.

Endmember case examples can link high fault slip rates, specific geological characteristics, and high Mrel. The 
highest Mrel estimates belong to the Mw6.0 2004 Parkfield and Mw6.8 2008 Methoni earthquakes, which have 
high fault slip rates, and high strain rates and plate velocities, respectively (see Figure 9). Near Parkfield, the 
fast creeping section of the San Andreas fault (Jolivet et  al.,  2015) contains several meters of highly veloci-
ty-strengthening material gouge and talc-bearing serpentinites (Johnson et  al.,  2006; Moore & Rymer,  2007; 
Savage & Langbein, 2008) which may explain the high Mrel and, perhaps, the relatively shallow afterslip observed 
(Bruhat et al., 2011; Johanson et al., 2006). In addition to this, Johanson et al. (2006) also posited that two Mw5 
aftershocks may have served to unpin an additional, adjacent fault section and trigger enhanced afterslip which 
explains the high Mrel. High slip and strain rates might not be sufficient for abundant afterslip, however. Whilst 
our lowest Mrel earthquakes have relatively low fault slip rates (and strain rates and plate velocities), the Mw6.8 
2003 Chengkung and the Japan Trench earthquakes have the highest strain and slip rates, respectively, but more 
moderate Mrel. Better estimates of lithology, rheology, and structure that can be used to describe the a − b profile 
at a fault would be helpful to further assess this dependence.

So far, we have only considered contemporary factors, but Mrel might vary over multiple earthquake cycles at a 
given fault. Simulations of different ruptures on the same fault patch have shown penetration to variable depths 
(Jiang & Lapusta, 2016; Shaw & Wesnousky, 2008), which could theoretically affect the fault area left primed 
for afterslip in future earthquakes, assuming that frictional stability is principally controlled by depth. Postseis-
mic behaviors have even been shown to vary at the same fault patch in some of these simulations (e.g., Barbot 
et al., 2012). Furthermore, as stress conditions evolve with tectonic loading, exactly when an earthquake occurs 
could affect its afterslip. For example, regions adjacent to an ‘early’ earthquake might require less afterslip to 
catch up with the surrounding interseismic creep, than for a ‘late’ earthquake. Studies of several quasi-periodic 
earthquake cycles at Parkfield have suggested this, indicating that the 1966 earthquake possibly produced more 
afterslip than the 1934 earthquake, which was ‘early’ (Segall & Du, 1993; Segall & Harris, 1987). However, data 
for these earthquakes and afterslip events are quite poor and the entire concept of quasi-periodic seismic cycles is 
debated (Kagan et al., 2012). Interseismic coupling may be an important factor in determining Mrel. More veloci-
ty-strengthening fault surfaces surrounding rupture are likely to allow both more interseismic creep and afterslip 
and be less conducive to larger seismic ruptures, thus interseismic coupling could potentially be an indicator of 
afterslip potential, but requires reliable estimates at every fault.

In summary, Mrel does not appear to be overwhelmingly affected by earthquake mechanism, fault dip, or depth, 
but may be favored by higher fault slip rates and lower rupture aspect ratios. The uncertainty in Mrel estimates for 
the same event discussed in Section 4.3 highlights that any of these relationships may be obscured by data and 
modeling uncertainty. We discuss this further below, but perhaps stronger or additional relationships could be 
established by observing more earthquakes in the same locations over time and attempting to model the afterslip 
in a systematic way.

5.3. Data and Modeling Factors

We have identified significant uncertainty in afterslip moment estimates that must be due to data and modeling 
factors. In this section, we explore factors within the modeling methodology that might have led to (a) the lack 
of strong relationships between Mrel and the start time and duration of observation across global and individual 
earthquake scales and (b) the observed variability in afterslip moment estimates. The identification of this uncer-
tainty should lead to a more informed analysis of afterslip models and perhaps an effort to standardize afterslip 
modeling methodology to improve model comparability and help us to better understand aseismic afterslip.

Afterslip moment should tend toward an asymptotic limit with earlier and longer observation windows, but we 
did not see strong evidence for this globally. The theoretical importance of observational duration is highlighted 
in Figure 7 by the synthetic afterslip decay case and can also be seen within some individual examples (e.g., 
estimates for the Mw8.0 2008 Sichuan earthquake). The importance of an early start time is highlighted clearly in 
studies such as Jiang et al. (2021), who proposed that Mrel may have reached 34% within 24 hr of the 2004 Mw6.0 
Parkfield earthquake. There are several potential explanations for the lack of these relationships in the data. First, 
other potential dependencies such as rupture aspect ratio and fault slip rate may contribute to obscuring temporal 
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relationships in analysis across different regions. Secondly, as afterslip can decay at different rates across different 
regions (Ingleby & Wright, 2017), 3 months of observation following one earthquake might capture a greater frac-
tion of its afterslip than in 1 year following another; thus global-scale correlations between Mrel and observation 
duration may be obscured. However, if either (or both) of these arguments are true, we would still expect to see 
correlations within different estimates following the same earthquake and within similar regions. In Section 4.3, 
we show that this is often not the case and that modeling must therefore be a significant source of afterslip esti-
mate uncertainty, ranging from a typical factor of ∼two or three to over an order of magnitude.

A number of modeling choices may contribute to more variable afterslip moment estimates. A total of 47 of the 88 
kinematic afterslip models we analyze do not properly account for or reasonably consider additional postseismic 
mechanisms (i.e., they did not model viscoelastic relaxation or pore fluid effects, or indicate why this is not required), 
which could lead to erroneous afterslip moment estimates (e.g., McCormack et al., 2020; Sun & Wang, 2015). The 
implications of not considering viscoelastic relaxation could be especially significant. For example, following the 
Mw8.0 2008 Sichuan earthquake, M. Wang et al. (2021) suggested that an afterslip-only model produced an afterslip 
moment estimate several times that of a model that included viscoelasticity. Conversely, they also suggested that 
not considering afterslip in viscoelastic relaxation models can lead to incorrect inferred effective viscosities. Addi-
tional examples where the trade-off of afterslip and viscoelasticity in models may be significant include following 
the Mw7.8 2015 Gorkha earthquake (e.g., B. Zhao et al., 2017), the Mw7.9 2001 Kokoxili earthquake (e.g., D. Zhao 
et al., 2021) and the great Mw9.1 2011 Tohoku (e.g., Sun & Wang, 2015) and Mw9.1 2004 Sumatra (e.g., F. Pollitz 
et al., 2008) subduction thrust earthquakes. This may explain why uncertainty does not decrease with coseismic 
moment. When considering both mechanisms, separating their respective contributions is also a difficult problem, 
particularly in the lower crust (Jacobs et al., 2002; Luo & Wang, 2021). Modeling additional mechanisms also 
requires more complex rheological model spaces, thus additional free parameters (e.g., Bruhat et al., 2011; Muto 
et al., 2016; B. Zhao et al., 2017). The validity of different rheological spaces is an ongoing debate and an obvious 
source of uncertainty. Bedford et al. (2016) argue that the homogeneous, elastic half-space is established, acceptable 
and useful for modeling afterslip, whilst others (e.g., Hearn & Burgmann, 2005; Sun & Wang, 2015) propose that 
layered elastic and viscoelastic half-spaces are more valid and can recover more afterslip. Finally, the failure to 
remove the deformation signal due to aftershocks could lead to overestimates of the afterslip moment and distorted 
spatial models (Lange et al., 2014). Aftershocks are commonly ignored in afterslip studies due to a comparatively 
small cumulative moment (e.g., Diao et  al.,  2018). However, if particularly large aftershocks are not explicitly 
accounted for, this could amount to significant errors in afterslip moment estimates: we adjusted one estimate by 
Gahalaut et al. (2008) by 47%, but only because they explicitly stated this. We encourage researchers to reserve the 
term afterslip for a specific phenomenon outlined in Section 2, rather than generic postseimsic deformation.

Uncertainty surrounding different methodological practices remains a significant barrier to comparing afterslip 
models. More general sources include the non-uniqueness and regularization inherent to the inversion process 
(Menke, 2018; Scales & Tenorio, 2001), approximations of topography and fault geometry, and data sensitivi-
ties, resolution, and distribution (Marchandon et al., 2021). For example, InSAR may often miss early afterslip 
or struggle to detect far-field deformation resulting from deep afterslip (Marchandon et al., 2021; Wimpenny 
et al., 2017). Many of the modeling choices outlined in this section are compiled and summarized in our database 
for further investigation. A push toward the standardization of kinematic afterslip modeling methods would help 
improve the comparability of afterslip models and allow better deductions of afterslip behaviors, fault zone struc-
ture, and the relationship between afterslip and aftershock sequences. Many specific best modeling practices are 
still unclear and require further research before implementation, such as how appropriate different rheological 
models spaces are for modeling postseismic mechanisms. However, we recommend transparency and explicit 
quantification of parameters and uncertainties, the provision of digital afterslip models (if possible) for further 
analyses, and a push toward standardized data quality and temporal observation windows (i.e., an effort to start 
observation periods as early as possible and ensure a long duration), while recognizing that this is not always 
possible.

6. Conclusion
We compile a database of 148 afterslip studies after 53 earthquakes, containing detailed information on main-
shock characteristics, modeling methods, and outputs (doi:10.5281/zenodo.6414330). By analyzing a subset of 
88 well-constrained kinematic slip models, we find that: (a) coseismic moment is the principal control on the 

https://doi.org/10.5281/zenodo.6414330
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ensuing afterslip moment, which scales near-linearly with a median value of 18% of the coseismic moment, (b) 
relative afterslip moment (Mrel) varies from less than 1% to over 300% of the coseismic moment, with an inter-
quartile range of 9%–32%, (c) global variation in Mrel cannot be accounted for by variation in factors such as fault 
dip, rake, and depth, (d) global variation in Mrel may be related to rupture aspect ratio and fault slip rate (which 
might be indicative of fault maturity), (e) there is an unexpected lack of strong, correlation between Mrel and the 
start time and duration of observation window on global scales, which could be obscured by other relationships 
or because afterslip decays sufficiently differently in different regions. However, as differences in start time and 
duration of observation window cannot always account for different Mrel estimates by different studies follow-
ing the same earthquake, we infer that: (f) there is significant, up to order-of-magnitude uncertainty in afterslip 
moment estimates related to the modeling process, which currently provides a barrier to systematic compari-
son. Our database and analysis help expose the current uncertainty in afterslip moment estimates and hopefully 
encourage the community to consider standardizing processes to provide increased ability to compare studies. 
Such comparisons can better constrain variability in afterslip behaviors, and deduce their controls. Understanding 
the controls on afterslip moment may allow the eventual incorporation of afterslip as a source of postseismic 
stress transfer in aftershock sequence hazard models.

Data Availability Statement
Data used in this study are accessible through U.S. Geological Survey (2017), Dziewonski et al. (1981); Ekström 
et al. (2012), Mai and Thingbaijam (2014), Styron and Pagani (2020), Kreemer et al. (2014), UNAVCO (2021), 
as indicated in text, and through the database (doi:10.5281/zenodo.6414330).
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Abstract
Strong earthquakes cause aftershock sequences that are clustered in time according to a power decay law, and in space

along their extended rupture, shaping a typically elongate pattern of aftershock locations. A widely used approach to model

earthquake clustering, the Epidemic Type Aftershock Sequence (ETAS) model, shows three major biases. First, the

conventional ETAS approach assumes isotropic spatial triggering, which stands in conflict with observations and geo-

physical arguments for strong earthquakes. Second, the spatial kernel has unlimited extent, allowing smaller events to exert

disproportionate trigger potential over an unrealistically large area. Third, the ETAS model assumes complete event

records and neglects inevitable short-term aftershock incompleteness as a consequence of overlapping coda waves. These

three aspects can substantially bias the parameter estimation and lead to underestimated cluster sizes. In this article, we

combine the approach of Grimm et al. (Bulletin of the Seismological Society of America, 2021), who introduced a

generalized anisotropic and locally restricted spatial kernel, with the ETAS-Incomplete (ETASI) time model of Hainzl

(Bulletin of the Seismological Society of America, 2021), to define an ETASI space-time model with flexible spatial kernel

that solves the abovementioned shortcomings. We apply different model versions to a triad of forecasting experiments of

the 2019 Ridgecrest sequence, and evaluate the prediction quality with respect to cluster size, largest aftershock magnitude

and spatial distribution. The new model provides the potential of more realistic simulations of on-going aftershock activity,

e.g. allowing better predictions of the probability and location of a strong, damaging aftershock, which might be beneficial

for short term risk assessment and disaster response.

Keywords ETAS � Short-term incompleteness � Anisotropic spatial kernel � Ridgecrest

1 Introduction

Strong earthquakes are usually observed to cause a pro-

nounced spatio-temporal pattern of aftershocks. More

precisely, according to the Omori-Utsu Law (Utsu et al.

1995), the temporal aftershock rate is subject to a power

law decrease with time t � tmain after the main triggering

event, that is,

gðt � tmainÞ ¼ ðt � tmain þ cÞ�p ð1Þ
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with the delay parameter c[ 0 (usually a few minutes to

hours) and the exponent p (usually in the range between

0:8� 1:2). It means that the temporal pattern of after-

shocks is dominated by events occurring within short time

after the mainshock. Figure 1a demonstrates this temporal

behavior for the Ridgecrest sequence in California, which

produced an M6.4 foreshock on July 4, 2019, followed by

an M7.1 mainshock within 34 hours on July 6, 2019.

The observed spatial patterns of aftershock sequences

stem from their tendency to occur on or close to the

mainshock rupture plane (Marsan and Lengliné 2008). The

larger the length-to-width ratio of this plane gets, the more

elongate the typical aftershock region becomes. In addi-

tion, a higher dip angle reduces the width of the 3D-to-2D

projection of the rupture plain to the earth’s surface and

therefore results in a scatter of two-dimensional aftershock

epicenters that can be increasingly well approximated by a

line segment.

The prevailing continental tectonic regime in southern

California with typically steep, strike-slip faulting favors

such elongated aftershock patterns in this region. With the

exception of the M6.7 1994 Northridge earthquake, all of

the most prominent mainshock-aftershock sequences of the

last 40 years (M6.6 1987 Superstition Hill, M7.3 1992

Landers, M7.1 1999 Hector Mine, M7.2 2010 Baja Cali-

fornia, M7.1 2019 Ridgecrest) demonstrate distinct linearly

elongate scattering of aftershock locations (Hainzl 2021).

In this context, the Ridgecrest sequence is a special case

as the M6.4 foreshock simultaneously ruptured two almost

orthogonal faults, leading to a double pattern of separate

linearly elongate aftershock clouds (Marsan and Ross

2021). Fig. 1b shows that the triggering M6.4 event (yel-

low pentagram) is located close to the intersection of the

two ruptured faults. In contrast, the M7.1 mainshock

(yellow hexagram) ruptured only one fault which appears

to be the extension of one of the faults activated by the

foreshock.

Analyzing and forecasting clustered seismicity is an

established discipline in seismological research. Its goal is

to understand the evolution of large aftershock sequences

and to predict their size, largest aftershock magnitude,

spatial distribution etc. A prominent approach to model

clustered seismicity is the so-called Epidemic Type After-

shock Sequence (ETAS) model, which describes earthquake

records as a superposition of independent background

seismicity and triggered earthquake sequences (Ogata

1988, 1998). The earthquake triggering component is

designed in terms of a branching process and characterized

by the triad of (1) trigger-magnitude dependent aftershock

productivity, (2) a temporal distribution of aftershock times

typically derived from the Omori Law (see Eq. 1), and (3)

an usually isotropic spatial distribution of aftershock

locations (e.g. Zhuang et al. 2002; Jalilian 2019). Particu-

larly, the aftershock productivity (i.e. expected number of

offsprings) for a trigger event with magnitude m is

kA;aðmÞ ¼ A expða ðm�McÞÞ; ð2Þ

where parameters A[ 0 and a[ 0 control the exponential

growth of the trigger potential and Mc is the cut-off mag-

nitude of the analyzed earthquake catalog.

Despite generally producing successful and insightful

estimation and forecast results, ETAS models are known to

be limited by a number of potential biases. In this article,

we present an approach that combines solutions for three

main short-comings of the conventional ETAS model, (1)

the isotropic spatial aftershock distribution, (2) the infinite

extent of the spatial kernel and (3) the short-term incom-

pleteness of earthquake records after strong triggering

events.

1.1 Bias 1: isotropic spatial distribution

The common assumption in ETAS models is that spatial

aftershock locations are distributed isotropically around the

triggering event. It is named as a shortcoming in many

publications because it stands in conflict with the above-

mentioned observation that aftershocks tend to occur close

to the (elongate) rupture plane of the triggering event

(Ogata 1998, 2011; Ogata and Zhuang 2006; Hainzl et al.

2008, 2013; Seif et al. 2017; Zhang et al. 2018). The

assumption of isotropy is reasonably valid for weak

earthquakes with small rupture extensions, but becomes

problematic for larger magnitudes, e.g. see the spatial

pattern of the Ridgecrest sequence in Fig. 1b. It has been

shown that inadequate spatial models can lead to an

underestimation of the productivity parameter a (Eq. 2)

because the numerous small events take over the role of

mimicking the ’’true’’ anisotropic distribution (Hainzl et al.

2008, 2013; Grimm et al. 2021).

1.2 Bias 2: infinite spatial extent

Under the common definition of an inifinite spatial kernel,

aftershock triggering is disproportionately associated with

the more numerous small events, that can more flexibly

mimic anisotropic event alignments than the few strong

mainshocks. This can lead to unrealistically far trigger

impact of small magnitudes and to a substantial underes-

timation of the direct aftershock productivity of strong

events, resulting in a smoothing of temporal event distri-

butions (Grimm et al. 2021).
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1.3 Bias 3: short-term aftershock incompleteness
(STAI)

Strong earthquakes typically cause incomplete aftershock

records immediately after their occurrence, mainly due to

an overlap of coda waves (Hainzl 2016a; de Arcangelis

et al. 2018). Figure 1c and (d) confirms this phenomenon

for the aftershock sequences of the M6.4 and M7.1

Ridgecrest events, respectively. Apparently, records of

smaller sized aftershocks are missing in the first minutes to

hours, somewhat foiling the power law decay of event rates

expected from the Omori-Utsu law (Eq. 1). The short-term

incomplete event records can therefore hide to a large

extent both the ’’true’’ Omori Law decay (Eq. 1) and the

’’true’’ aftershock productivity of the trigger event (Eq. 2)

and lead to an overestimation of Omori parameter c and an

underestimation of productivity parameter a (Hainzl

2021, 2016b; Page et al. 2016; Seif et al. 2017).

Data-driven uncertainties of event locations and cut-off

magnitude as well as the assumption of a time-invariant

seismic background may lead to further inaccuracies in the

parameter estimation (Harte 2013, 2016; Seif et al. 2017).

However, they can be neglected in our study because they

are either expected to be small in southern California

datasets (e.g. location and magnitude uncertainty) or do not

apply in an isolated sequence analysis (background miss-

specification).

1.4 Scope of this article

In this article, we combine an ETAS approach accounting

for short-term incomplete event records with the applica-

tion of a generalized, anisotropic spatial model that

restricts the spatial kernel to the local surrounding of the

trigger source. We demonstrate the functionality and

superiority of our approaches over the conventional,

Fig. 1 a Magnitudes versus event times of Ridgecrest Mw6.4 (red

dots) and Mw7.1 (blue dots) aftershock sequences. Event times are

denoted in days before/after Mw7.1 mainshock, the dashed black line

represents the time origin (M7.1 event time). Light blue and light red

dots mark aftershocks with magnitudes larger than 5. Yellow

pentagram symbolizes the Mw6.4 foreshock, and yellow hexagram

marks the Mw7.1 mainshock. b Aftershock locations of the

Ridgecrest Mw6.4 and Mw7.1 sequences. Legend as in a. c
Magnitudes versus logarithmic event times of Ridgecrest Mw6.4

sequence. The dashed red line represents a manually fitted estimate of

the empirical completeness function McðtÞ. d Magnitudes versus

logarithmic event times of Ridgecrest Mw7.1 sequence. The dashed

red line represents a manually fitted estimate of the empirical

completeness function McðtÞ
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isotropic ETAS model by means of forecasting experi-

ments for the Ridgecrest sequence.

We utilize the generalized anisotropic and locally

restricted spatial kernel suggested by Grimm et al. (2021),

which assumes uniform trigger density along an estimated

rupture line segment, with power-law decay to the sides

and at the end points of the rupture. Zhang et al. (2018)

pursued an even more detailed approach, which assumed

constant trigger rate in the entire rupture plane, with

power-law decay outside of it. Different versions of elliptic

Gaussian distributions were introduced and discussed by

Ogata (1998, 2011) and Ogata and Zhuang (2006). The

latter approaches successfully modeled spatial aftershock

patterns, however, they require a new set of parameters and

are therefore not flexibly combinable with the conven-

tional, isotropic functionality. In contrast, the kernel of

Grimm et al. (2021) represents a generalization of the

isotropic function and therefore allows simultaneous ani-

sotropic modeling of some events (e.g. above a certain

magnitude threshold) and isotropic modeling of the rest. In

order to address the abovementioned particularity of the

M6.4 Ridgecrest foreshock, rupturing two almost orthog-

onal faults, we further generalize the approach by allowing

a spatial kernel composed by a weighted superposition of

two distinct rupture line segments.

Additionally, we accounts for STAI by applying an

ETAS model version that incorporates rate-dependent

incompleteness of event records. Recognizing alternative

approaches that will be briefly described in the Methods

section, we choose for the ETAS-Incomplete (ETASI)

model as recently suggested by Hainzl (2021). For sim-

plicity and to sharpen its focus on the incompleteness

detection, Hainzl (2021) neglected the space dimension in

his model. As this article combines the ETASI time model

of Hainzl (2021) with an adequate, anisotropic spatial

kernel it can be seen as the space-including extension of the

latter. The focus of this study, however, is on the benefit of

modeling the spatial aftershock distribution by a general-

ized anisotropic spatial kernel, rather than the benefit of the

ETASI model.

This article is structured as follows. In the Methods

section, we introduce the conventional ETAS model and its

ETASI extension and define the anisotropic, locally

restricted spatial kernel. This section includes a description

of the estimation procedures for strikes and rupture posi-

tions and the spatial integral over anisotropic kernels. Next,

the Application section explains the three forecasting

experiments, introducing the data and time-space windows

for the parameter estimation and forward simulations.

Finally, we interpret and discuss our forecasting results and

draw our conclusions. Source codes for model estimation

and simulation are freely available in a Github repository

(see Data and resources).

2 Methods

The ETAS model, first introduced by Ogata (1988, 1998),

is a branching-tree type model which describes clustered

earthquake occurrences by consecutive triggering evolving

over multiple parent-child generations (i.e. allowing sec-

ondary aftershocks). The triggered seismicity is overlaying

a time-invariant background process.

In this section, we will first introduce the conventional,

isotropic ETAS model approach. Next, we will extend the

model to obtain a time-space version of the ETASI model

suggested by Hainzl (2021), which involves STAI into

parameter estimation. Mostly, notations are consistent with

Hainzl (2021). We will then define the anisotropic gener-

alization of the spatial kernel, which is compatible with

both the ETAS and ETASI model, and introduce the local

restriction of the kernel. Finally, we explain the fitting

algorithm for the strike angle and rupture position of ani-

sotropic trigger events and the methods for spatial integral

estimation.

2.1 ETAS-model

In the conventional ETAS model approach, the occurrence

rate of an earthquake with magnitude m, occurring at time t

and at location (x, y) is modeled by an inhomogeneous

Poisson process with a time-space-magnitude dependent

intensity function

kðt; x; y;mÞ ¼ f0ðmÞR0ðt; x; yÞ

where

f0ðmÞ ¼ b e�bðm�McÞ ð3Þ

is the ’’true’’ probability density function (pdf) of the fre-

quency-magnitude distribution (FMD) with Gutenberg-

Richter parameter b ¼ b=lnð10Þ (Gutenberg and Richter

1944), and

R0ðt; x; yÞ ¼ l uðx; yÞ

þ
X

i:ti\t

kA;aðmiÞ gc;pðt � tiÞ hD;c;qðriðx; yÞ;mi; liÞ ð4Þ

is the ’’true’’ occurrence rate of events with magnitude

m�Mc, at time t and at location (x, y). The ’’true’’ event

rate is modeled by a superposition of the time-invariant

seismic background rate l uðx; yÞ with parameter l[ 0

and a sum of the trigger rate contributions of all events i

that occurred prior to current time t. kA;aðmiÞ and gc;pðt �
tiÞ denote the aftershock productivity and Omori-Utsu Law

decay functions as defined in Eqs. (1) and (2), respectively.

hD;c;qðriðx; yÞ;mi; liÞ models distribution of aftershock

locations triggered by event i, with parameters D; c and
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q. The precise inputs and shape of the spatial kernel are

discussed later.

The term ’’true’’ means that the (physical) relationships

are expected to be observed with perfect earthquake

records. The main assumption of the conventional ETAS

model is that STAI does not significantly distort the ‘‘true’’

magnitude distribution and the ‘‘true’’ event rates.

2.2 ETASI model

2.2.1 Rate-dependent iIncompleteness

The concept of rate-dependent earthquake record incom-

pleteness assumes that the ’’true’’ relationships underlying

f0ðmÞ and R0ðt; x; yÞ are not accurately identifiable in

available earthquake catalogs because especially events

with small magnitudes are detected with lower probability

in periods of high seismic activity. In these periods, the

detection ability is limited typically due to overlapping

seismic waves (Hainzl 2016a, 2021).

Fitting the ’’true’’ relationships to incomplete data

records may therefore lead to significantly biased param-

eter estimates (Hainzl 2016a, b; Page et al. 2016; Seif et al.

2017; Hainzl 2021).

In recent years, there has been growing research interest

in how to account for short-term incomplete datasets. For

instance, Zhuang et al. (2017) developed a replenishment

algorithm to fill up likely incomplete time intervals by

simulated events, in order to obtain artificially complete

pseudo-records. Other authors, particularly mentionable

Omi et al. (2013, 2014), Lippiello et al. (2016),

de Arcangelis et al. (2018), Mizrahi et al. (2021) and

Hainzl (2021), tried to incorporate STAI directly into the

ETAS model fit. A rather simple workaround approach is

to remove likely incomplete time periods from the fitted

time interval using empirical completeness functions, such

as performed in Hainzl et al. (2013) and Grimm et al.

(2021). A comprehensive discussion and comparison of

various ETASI models is not in the scope of this article.

The choice for the ETASI model proposed by Hainzl

(2021) was made for rather practical reasons, mainly

because of its compatibility with existing code.

2.2.2 Model formulation

The working assumption of the ETASI model described

here is that an earthquake with magnitude m and occurring

at time t can only be detected by the operating seismic

network if no event of equal or larger magnitude occurred

within the blind time ½t � Tb; t�, where Tb is typically in the

range of some seconds to few minutes (Hainzl 2021).

Similar assumptions have formerly been formulated by

Lippiello et al. (2016), de Arcangelis et al. (2018) and

Hainzl (2016a).

Let N0ðtÞ be the expected number of events occurring

within the entire spatial window S during blind time

½t � Tb; t�,

N0ðtÞ ¼
Z t

t�Tb

ZZ

S

R0ðt; x; yÞdx dy dt � Tb

ZZ

S

R0ðt; x; yÞ dx dy;

where the approximation holds under the assumption that

event rates are approximately constant during the blind

time (Hainzl 2021). According to the ’’true’’ FMD (Eq. 3),

each of the N0ðtÞ events has a probability of e�b ðm�McÞ to
exceed magnitude m. We define the detection probability

pdðm; tÞ of an earthquake at time t with magnitude m as the

probability that no equal or larger event occurred during

blind time Tb, i.e.

pdðm; tÞ ¼ e�N0ðtÞ e�b ðm�McÞ
:

Following the derivations in Hainzl (2016b, 2021), we

obtain the ’’apparent’’, incompleteness-biased FMD

f ðm; tÞ : ¼ f0ðmÞN0ðtÞ
pdðm; tÞ

1� e�N0ðtÞ

and the ’’apparent’’ event rate

Rðt; x; yÞ :¼ R0ðt; x; yÞ
N0ðtÞ

1� e�N0ðtÞ
� �

:

The term ’’apparent’’ signalizes that the functions f and R

do not represent the ’’true’’, but the observable relation-

ships that are possibly distorted by rate-dependent record

incompleteness. In periods of high seismic activity, the

’’apparent’’ FMD exhibits a larger relative frequency of

strong events (because they are more likely to be detected)

and an event rate lowered by detection capacity. We obtain

the ETASI intensity function

kðt; x; y;mÞ ¼ f ðm; tÞRðt; x; yÞ

¼ f0ðmÞR0ðt; x; yÞ pdðm; tÞ

The two underlying, simplifying assumptions in the ETASI

model are that (1) the blind time Tb is magnitude-inde-

pendent, which Hainzl (2021) justifies by typically shorter

source durations than travel times of coda waves, and (2)

that the seismic network is equally occupied for blind time

Tb by any event in the entire investigated spatial window.

The second assumption is reasonable for a small spatial

window, e.g. when analyzing an isolated sequence. When

fitting the ETASI model over a larger region, it needs to be

checked that relevant clusters do not evolve at the same

time but at distinct locations as they would be assumed to
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simultaneously occupy the entire seismic network. A rea-

sonable approach to prevent undesired biases is to choose a

larger cut-off magnitude.

2.2.3 Log-likelihood optimization

The parameter vector h ¼ fl;A; a; c; p;D; c; q; b; Tbg of

the ETASI model is estimated by maximizing its log-

likelihood function LL ¼ LL1 � LL2 with

LL1 ¼
X

events j

ln f0ðmjÞR0ðtj; xj; yjÞ pdðmj; tÞ
� �

;

LL2 ¼
Z 1

Mc

Z T2

T1

ZZ

S

kðt; x; y;mÞ dx dy dt dm

� T2 � T1
Tb

� 1

Tb

Z T2

T1

e
�Tb
RR

S
R0ðt;x;yÞ dx dydt

ð5Þ

where the sum in LL1 goes over all target events in the

magnitude-time-space window ½Mc;1Þ � ½T1; T2� � S and

LL2 integrates over this model space. In our study we

optimized the parameter vector h using the gradient-based

Davidson-Fletcher-Powell algorithm (Ogata 1998; Zhuang

et al. 2002; Jalilian 2019).

2.3 Generalized anisotropic spatial kernel

2.3.1 Conventional isotropic kernel

The spatial kernel hD;c;qðri;mi; liÞ in Eq. (4) models the 2D-

distribution of aftershocks locations. In conventional ETAS

model approaches, the triggering event is assumed to be a

point source, distributing its offsprings isotropically around

its epicenter. A classical definition of an isotropic kernel

(see Ogata 1998; Grimm et al. 2021; Jalilian 2019) is

hisoD;c;qðriðx; yÞ;miÞ :¼
q� 1

D expðcðmi �McÞÞ

1þ p riðx; yÞ2

D expðcðmi �McÞÞ

 !�q

where riðx; yÞ denotes the point-to-point distance between a
potential aftershock location (x, y) and the coordinates

ðxi; yiÞ of the triggering event i, and mi is the magnitude of

the event i. The kernel is constrained by the parameters D

and c that control the magnitude-dependent width of the

kernel, and parameter q that describes the exponential

decay of the function with growing spatial distance.

2.3.2 Anisotropic generalization

Here we use the anisotropic generalization of the spatial

kernel that was first introduced by Grimm et al. (2021),

hD;c;qðriðx; yÞ;mi; liÞ :¼
q� 1

D expðcðmi �McÞÞ

1þ 2 li riðx; yÞ þ p riðx; yÞ2

D expðcðmi �McÞÞ

 !�q

:

In this spatial model, the distance term riðx; yÞ denotes the
point-to-line distance between the potential aftershock

location (x, y) and the estimated rupture segment of trig-

gering event i with length li. That is, the kernel assigns

constant density along the rupture line segment, with a

power-law decay to the sides. Note that

hD;c;qðriðx; yÞ;mi; 0Þ ¼ hisoD;c;qðriðx; yÞ;miÞ;

i.e. the anisotropic kernel is a generalization and collapses

to the isotropic model if the triggering location is assumed

to be a point source with rupture extension li ¼ 0. There-

fore, the generalized spatial model can be used for mixing

approaches of both kernels, e.g. applying anisotropy to

events i with magnitudes mi �Maniso:

li ¼
0; for mi\Maniso; (isotropic trigger)

10�2:57þ0:62mi ; for mi �Maniso; (anisotropic trigger)

�

ð6Þ

The scaling relationship for anisotropic events is taken

from the estimate of subsurface rupture lengths for strike-

slip faulting events, provided in Wells and Coppersmith

(1994). Alternative relationships can be applied, too, but

are not expected to impact results.

2.3.3 Local spatial restriction

Both the conventional isotropic and the generalized ani-

sotropic kernels are defined in terms of a probability den-

sity function (pdf) over infinite space. Realistically,

however, small earthquakes should exert only a locally

restricted trigger influence. Grimm et al. (2021) showed

that an infinite spatial extent may lead to an underestima-

tion of the aftershock productivity parameter a because it

overestimates the triggering power of smaller events at the

cost of the larger events. A manual analysis of the spatial

aftershock patterns of the six Californian mainshocks

named in the introduction shows that the cloud of potential

aftershocks typically lies within one estimated rupture

length (by Wells and Coppersmith 1994) from the epi-

center. In case of an anisotropic shape of the kernel, the

area of half a rupture length around the extended rupture

segment seems sufficient. According to this observation,

we choose a spatial restriction Ri for event i according to

Ri :¼
10�2:57þ0:62mi ; for mi\Maniso; (isotropic trigger)

0:5 � 10�2:57þ0:62mi ; for mi �Maniso; (anisotropic trigger)

�

ð7Þ
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where again we use the strike-slip faulting subsurface

rupture length scaling from Wells and Coppersmith (1994).

In other words, the spatial kernel for event i is only

defined in the restricted area

SiðRiÞ :¼ fðx; yÞ 2 R2jriðx; yÞ�Rig

and set to 0 outside of it. Note that the restricted area SiðRiÞ
can assume isotropic and anisotropic shapes, depending on

the point-to-point or point-to-line definition of the distance

term riðx; yÞ. In order to retain the property of a pdf, we

need to rescale the kernel within the restricted area by its

analytical integral

HD;c;qðRi;mi; liÞ : ¼
ZZ

SiðRiÞ
hD;c;qðriðx; yÞ;mi; liÞ dx dy

¼ 1� 1þ 2 li Ri þ pR2
i

D expðcðmi �McÞÞ

� �1�q

:

ð8Þ

The integral term holds true for both isotropic (li ¼ 0) and

anisotropic triggers (li [ 0). We obtain the generalized,

restricted and anisotropic spatial kernel

hrestrD;c;qðriðx; yÞ;mi; liÞ ¼
hrestrD;c;qðriðx; yÞ;mi; liÞ
HD;c;qðRi;mi; liÞ

; if riðx; yÞ�Ri;

0; if riðx; yÞ[Ri:

8
><

>:

ð9Þ

2.4 Estimation of strike and epicenter location

The restricted, anisotropic spatial kernel in Eq. (9) requires

a strike angle to define the orientation of the extended

rupture for anisotropic triggers with li [ 0. In retrospect,

the strike angle could be taken from one of the numerous

publications about the Ridgecrest sequence or from focal

mechanism datasets such as the Global Moment Tensor

Catalog, the ISC-GEM Global Instrumental Earthquake

Catalog or from local datasets of the Southern California

Earthquake Data Center (SCEDC). In order to perform a

realistic forecasting test case, however, we should build

upon instantaneous strike estimates such as from local

agencies (e.g. the United States Geological Survey), which

are typically available within several minutes to hours.

Here, we used the strike estimation algorithm proposed

by Grimm et al. (2021), that optimally fits the rupture

segment through the cloud of early aftershock locations by

maximizing the contributed spatial rate under initial spatial

parameter guesses. To be more precise, we ran through

possible strikes in 1	 steps (i.e. f1	; :::; 180	g where we can
neglect all strikes larger than 180	 because we do not

account for dip direction in our model). We also moved the

rupture along each strike angle in order to test different

positions of the rupture segment relative to the fix epi-

center. Here, we go through possible relative positions in

0.01-steps (i.e. f0; 0:01; 0:02; :::; 0:99; 1g), where 0 and 1

means that one of the ends of the rupture segment coincides

with the epicenter, and 0.5 denotes the situation where the

rupture embeds the epicenter directly in its center. Among

all combinations, we searched the orientation and rupture

position that maximizes the forward trigger contribution of

the anisotropic event i to subsequent events j within a fixed

duration Dt ¼ 1 hour, i.e. with ti\tj\ti þ Dt. The for-

ward trigger contribution of event i is computed as
X

t:ti\tj\tiþDt

hrestD;c;qðriðxj; yjÞ;mi; liÞ: ð10Þ

In order to avoid that the rupture orientation and position is

dominated by single events that occurred very close to the

segment candidate, we applied a minimum distance of 0.2

kilometers.

Here, we use the initial spatial parameters D ¼ 0:0025,

c ¼ 1:78 and q ¼ 1:71 derived from the results of an iso-

tropic ETAS model for a long-term California dataset,

locally restricted to R ¼ 2:5 rupture lengths, by Grimm

et al. (2021). Tests have shown that modified initial

parameters changed the level of the sum of forward rate

contributions, but led to similar strike and epicenter loca-

tion estimates. We also tested multiple durations Dt up to

30 hours and found that the estimation procedure provided

very similar estimates for strike and rupture position. It

shows that the rupture orientation and position can be

appropriately identified soon after the trigger event

occurred.

In the Application section we present the strike and

rupture position estimation for the example of the M6.4

and M7.1 Ridgecrest events.

2.5 Estimation of spatial integral

The computation of the log-likelihood function in Eq. (5)

requires the estimation of the spatial integral of R0 and

therefore hrestrD;c;q.

In the isotropic case, the integral can be estimated semi-

analytically by the radial partitioning method suggested by

Ogata (1998) and applied in the R package ETAS (Jalilian

2019). It uses the property, that the isotropic spatial kernel

can be integrated analytically over circular areas SiðRÞ,
according to Eq. (8). As Fig. 2a illustrates, the polygon

defining the spatial window S is partitioned into a fine grid,

with two neighboring boundary grid points having

approximately equal distances ~R to the point source coor-

dinate of event i. The integral of hrestrD;c;q over each of these

thin segments of a circle can then be approximated by the

analytical full integral, weighted by the ratio of the circle

Stochastic Environmental Research and Risk Assessment

123



segment /=360	, where / is the angle enclosed by the

circle segment (Jalilian 2019; Ogata 1998).

Similarly, an anisotropic spatial kernel can be integrated

analytically over an anisotropic region Sið ~RÞ with maxi-

mum distance ~R to the extended rupture. Due to the non-

circular shape of region SiðRÞ for anisotropic triggers,

radial partitioning can be only performed at both ends of

the rupture segment. As Fig. 2b illustrates, in a similar way

we use ’’bin partitioning’’ in the space orthogonal to the

rupture. Unfortunately, in the anisotropic case, the weights

/=360	 of the circle segments at both ends of the rupture

only relate to the part of the integral that is estimated by

radial partitioning. Similarly, the weight of a bin of size D l

is D l
2 li

relative to only the orthogonal space on both sides of

the rupture segment. In each iteration of the parameter

estimation, the shares of the radial and the orthogonal

integral parts change and need to be determined numeri-

cally before each iteration. This comes at the computa-

tional cost of approximately doubled run-time, given that

only the minority of strong earthquakes with magnitude

M�Maniso are modelled anisotropically.

3 Application

We carry out three forecasting experiments to check the

quality of the previously defined models in predicting the

observed Ridgecrest M6.4 and M7.1 sequences. Each

forecasting experiment consists of three main steps, rep-

resented as blue boxes in Fig. 3:

• Parameter Estimation: Estimate model parameters for

a specified event sub-set of southern Californian

earthquake data

• Forward Simulation: Use the fitted model parameters

to conduct 10,000 forward simulations of the Ridge-

crest M6.4 or M7.1 sequence, respectively.

• Evaluation: Analyze simulated sequences and compare

to the observation.

In the following, we first introduce the basic earthquake

event set for California underlying this study, and define

the time-space windows used to obtain the event sub-sets

applied for parameter estimation. Next, we describe the

three forecasting experiments, rigorously defining the

magnitude-time-space windows applied for parameter

estimation and forward simulations. Each forecasting

experiment is repeated for five versions of the models

introduced in the Methods section, which are defined in

detail. Finally, we specify the forward simulation process

and attributes and measures to assess the quality of the

forecasts. Here, we also give an example of the estimation

of strike angles and rupture positions for the Ridgecrest

M6.4 and M7.1 events.

3.1 Data

As our basic event set, we downloaded the earthquake

catalog from the Southern California Earthquake Data

Center (SCEDC, Hauksson et al. 2012). The entire dataset

comprises 699,175 event occurrences between January 1,

1981, and December 31, 2019. Because magnitudes seem

to be clustered at values with one decimal, we round all

Fig. 2 Visualization of the spatial integral estimation needed for

computing the log-likelihood function (Eq. 5) for a isotropic triggers

and b anisotropic triggers. The box represents the boundary of the

spatial target region (polygon), gridded into small intervals. Red

crosses symbolize the epicenters of the triggering events. In a, the red

circle around the event represents the contour lines of an isotropic

spatial kernel and the shaded segments illustrate the radial partition-

ing method. In (b), the red box and semi-circles symbolize the contour

lines of the anisotropic spatial kernel, and the shaded segments

illustrate the radial and bin partitioning method
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magnitudes to one decimal and use the cut-off magnitude

Mc ¼ 2:05 (Hutton et al. 2010; Hainzl 2021). We remove

events at depths larger than 40 km to avoid completeness

issues.

3.2 Forecasting experiments

Here, we describe in detail the design of the forecasting

experiments, summarized in Fig. 3.

3.2.1 Experiment 1

We estimate generic, long-term California model parame-

ters within the hexagonal polygon of southern California

defined in Hutton et al. (2010). In order to mitigate com-

putational costs, we restrict the time window to the period

between January 1, 1987, and December 31, 2018,

including the five prominent earthquake sequences before

Ridgecrest as named in the Introduction section, and

choose the larger cut-off magnitudeMc ¼ 2:95. The cut-off

magnitude is a trade-off between too large and too small

event record sizes that ensures reasonable run-time and

statistical robustness of parameter estimates. Additionally,

it avoids potentially biased estimates of the blind time

parameter Tb in large spatial areas due to simultaneous

clustering. The magnitude-time-space window contains

7,215 fitted target events. We account for external trig-

gering impact by including complementary events that

occurred after January 1, 1986, and in the surrounding of

0.5	 geographical degrees of the fitted area.

The estimated models are then applied to forecast the

Ridgecrest M6.4 foreshock sequence above cut-off

Table 1 Overview of the model

variants tested in this paper
Name Model version Maniso Ri Ri

(isotropic triggers) (anisotropic triggers)

ETAS conventional ETAS - 1 -

ETAS iso-r ETAS - 1RLi -

ETAS aniso-r ETAS 6.0 1RLi 0:5RLi

ETASI iso-r ETASI - 1RLi -

ETASI aniso-r ETASI 6.0 1RLi 0:5RLi

Non applicable cases are filled with ’’-’’. Spatial restrictions Ri of event i are denoted in terms of the

estimate rupture length (RLi)

Fig. 3 Summary of the forecasting experiments (from left to right):

The five model versions, listed in Table 1, are fitted to a long-term

California event sub-set (Experiments 1 and 2) and to the local M6.4

Ridgecrest sequence (Experiment 3). The estimated parameters are

applied to forward simulations of the Ridgecrest M6.4 sequence

(Experiment 1) and the Ridgecrest M7.1 sequence (Experiments 2 and
3). The predicted sequences are compared to the observed ones with

respect to three attributes, further described in the Attributes and
Measures section
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magnitude Mc ¼ 2:05, within a circular polygon with

radius 40 km centered in the M6.4 event location. The

simulated time window starts in the moment of the M6.4

event (July 4, 2019) and ends at the M7.1 mainshock event

time (July 6, 2019), thus it has a duration of approximately

34 hours. We initialize triggering seismicity by the event

history from June 1, 2019.

3.2.2 Experiment 2

In the second experiment, we use the same set of generic,

long-term California parameters, but apply it in a forecast

of the Ridgecrest M7.1 mainshock sequence above cut-off

magnitude Mc ¼ 2:95, starting at the M7.1 event time for a

duration of ten days. The spatial simulation window is

defined by a disk with radius of 75 km, centered in the

M7.1 event location. Again, we initialize triggering seis-

micity by the event history from June 1, 2019, here until

the M7.1 event time.

3.2.3 Experiment 3

In the third experiment, we simulate Ridgecrest M7.1

sequences with the same settings as for Experiment 2, but

based on parameter estimates fitted over the immediately

preceding M6.4 foreshock sequence. For the parameter

estimation, we use the same magnitude-time-space target

window as for the M6.4 sequence simulations in Experi-

ment 1. We account for external triggering by including

complementary events that occurred after June 1, 2019, and

within a disk with increased radius of 50 km.

3.3 Fitted models

Each forecasting experiment is carried out for five different

versions of the model introduced in the Methods section,

summarized in Table 1. The ’’ETAS conventional’’ model

serves as our benchmark and uses the most standard set-up

of an ETAS model (e.g. Ogata 1998; Zhuang et al. 2002;

Jalilian 2019). It applies an isotropic spatial kernel with

infinite spatial extent to all triggers. The ’’ETAS iso-r’’

model applies an isotropic kernel, but restricts the spatial

extent to one rupture length for all events, according to

Eq. (7). In the ’’ETAS aniso-r’’ model, all events with

magnitudes mi �Maniso ¼ 6:0 are modeled as an aniso-

tropic trigger source with a spatial restriction to half a

rupture length (Eqs. 6 and 7). The other events are modeled

as isotropic triggers, restricted to one rupture length. The

’’ETASI iso-r’’ and ’’ETASI aniso-r’’ models combine the

spatial kernel settings of the latter models with the ETASI

approach accounting for STAI.

3.4 Simulation process

For each forecasting experiment and model version, we

carry out 10,000 realizations of synthetic sequences to

obtain statistically stable results. At the beginning of each

simulation, we distribute the Poisson-sampled number of

background events, scaled by the size of the spatial area,

uniformly over space and time. The assumption of an

uniform spatio-temporal background event distribution

appears plausible within the short and small space-time

simulation windows.

Next, we sample the numbers of offsprings for the ini-

tiating event history and the background events. The

number of offsprings, depending on trigger magnitude m, is

drawn from a Poisson distribution with expected value

NðmÞ ¼ kðmÞ 1

1� p
ðT þ cÞ1�p � c1�p
� �

: ð11Þ

where k(m) is the aftershock productivity function in

Eq. (2) and the latter term is the integral from t ¼ 0 to a

maximum trigger duration t ¼ T (in days) over the Omori-

Utsu function in Eq. (1). We need to rescale the aftershock

productivity to obtain the expected number of offsprings

within T days, because the Omori-Utsu law is not nor-

malized (no pdf) and, therefore, typically does not integrate

to one. Thus, it interacts with the scaling parameter A of the

productivity function.

Each triggered event is then assigned an event time and

location according to inversion sampling from the

(rescaled) Omori-Utsu law and the spatial kernel. The

magnitude is sampled by the inversion method from the

estimated FMD in Eq. (3), applying a maximum magnitude

of 7.5 for California. The aftershock sampling routine is

repeated for every newly triggered event in the simulated

time-space window until no more events are sampled.

In order to make fair comparisons of simulated

sequences with the observed ones, we need to consider the

implications of STAI in the forecasts. The ETASI models

account for incomplete records in the parameter estimation

and therefore forecast the ’’true’’, i.e. complete, aftershock

sequence. According to its definition of event detectability,

we would need to delete all events that occurred within the

blind time Tb of an earlier event with larger magnitude.

For the sake of transparency and consistency with the

observations, we used an alternative approach and manu-

ally fitted empirical magnitude completeness functions

McðtÞ ¼
�1:4 log10ðtÞ þM �Mc � 4:75; (Ridgecrest M6.4);

�0:99 log10ðtÞ þM �Mc � 3:75; (Ridgecrest M7.1):

�

ð12Þ

to the logarithmic event time-magnitude scatter data of the

observed Ridgecrest M6.4 and Ridgecrest M7.1 sequences

in Fig. 1c and d.
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In the forecasts generated by the ETASI iso-r and aniso-

r models, we delete all events that fall in the supposedly

undetected range below the line of the simulated sequence.

In contrast, ETAS models estimate STAI-biased aftershock

productivities and therefore lead to predictions of the

incomplete, rather than the ’’true’’ size of the sequence.

Therefore, in forecasts generated by these models we do

not delete events.

3.4.1 Attributes and measures

For each model version and experiment, we want to assess

the quality of the forecasts with respect to three attributes,

in comparison with the observed sequence evaluated over

the same magnitude-time-space window.

We compute the predicted cumulative distribution

function (cdf) of the number of aftershocks and the pre-

dicted pdf of the largest aftershock magnitude out of the

10,000 forecasted sequences. As a quantitative measure of

the fit, we determine the exceedance probability that the

predicted distribution would forecast a larger or the

observed value. Extreme exceedance probabilities, either

close to 0 or 1, indicate an inadequate prediction of the

attribute.

To test the spatial distribution of aftershock locations,

we define a 1km � 1km spatial grid over the spatial sim-

ulation window of the forecasting experiment and count the

number of aftershocks in each simulation run, that occurred

closest to the respective grid points. We determine the

spatial distribution Dij of the i-th simulation run by divid-

ing the number of events occurred at each grid point j, Nij,

by the number of events in the i-th simulation run, Ni, i.e.

Dij ¼ Nij=Ni:

By repeating the same procedure for each simulation run,

we obtain 10,000 simulated spatial distributions Dij for

each model version. Finally, we average the individual

simulated distributions to obtain the predicted probability

Pj that an event occurs at grid point j.

The more events of the observed sequence have occur-

red at grid points with high predicted probabilities Pj, the

better is the forecast. Therefore, we quantify the goodness

of the spatial fit with the likelihood Lspace ¼
Q

grid points j P
Nobs
j

j where Nobs
j is the number of observed

events at grid point j with corresponding log-likelihood

LLspace ¼
X

grid points j

Nobs
j lnðPjÞ:

We compute the information gain of the models’ spatial

predictions relative to the ETAS conventional model by

IG ¼
LLspace � LL0space

Nobs

where LL0space is the benchmark result for the ETAS con-

ventional model (Hainzl 2021; Rhoades et al. 2014).

3.4.2 Strike and rupture position estimates

For anisotropic models, both the parameter estimation and

the forward simulations of the Ridgecrest M6.4 and M7.1

sequences require estimates of the strike angle and rupture

position of all events with magnitude M[ 6:0.

Figure 4a demonstrates the methodology, described in

the Methods section, for the Ridgecrest M6.4 foreshock.

The forward trigger rate contribution (y axis) from Eq. (10)

is plotted against the strike sample (x axis) and the sample

of relative rupture positions (red lines). The curves clearly

show a bi-modal shape, with peaks at strikes 34	 and 132	

and relative rupture positions 0.76 and 0.77. Fig. 4c visu-

alizes the optimized rupture orientation and position as a fit

through the cloud of potential aftershocks within the first

hour (red) or within 30 hours (yellow). It confirms the

earlier mentioned particularity of two almost orthogonally

ruptured faults. The strike 34	 rupture segment does not

perfectly fit the aftershock alignment, as segment must go

through the fixed M6.4 epicenter location which seems to

be slightly off the ruptured fault. Apparently, later after-

shocks have a very similar spatial distribution as the events

occurred within the first hour. For larger Dt, the M6.4 strike

estimates would vary by only 1	 or 2	, respectively.
Figure 4b shows the analogous analysis for the M7.1

Ridgecrest mainshock. Here, the maximizing properties are

strike 142	 and a relatively central rupture position 0.55.

The M7.1 event ruptured a single fault, resulting in an uni-

modal shape of the forward trigger contribution curves.

4 Results and discussion

In this section, we analyze and discuss the results of the

three forecasting experiments, summarized in Fig. 3. We

use the attributes and measures presented in the Applica-

tion section to evaluate the quality of the forecasts, com-

pared to the observed sequences. The model parameter

estimation results of both the generic California and the

Ridgecrest M6.4 sequence parameter fits are listed in

Table 2 and will help us to understand and explain features

in the forecasts. After a rigorous discussion of the fore-

casting results, we will mention some sensitivity tests that

we applied to check the robustness of our findings.
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4.1 Forecasting experiment 1

In the first forecasting experiment, we simulated the

Ridgecrest M6.4 sequence, starting at the time of the M6.4

earthquake occurrence, based on generic parameters, fitted

on a long-term and spacious Californian event set. The

simulation period covers the 34 hours until (but non-in-

cluding) the occurrence of the M7.1 mainshock.

4.1.1 Predicted aftershock productivity

Figure 5a shows the predicted cdfs of the number of

aftershocks for each model, compared to the observed

M6.4 sequence, which produced 633 events in the same

time-space window. Evidently, the ETAS conventional

model (with isotropic, unlimited spatial kernel) provides a

very inappropriate estimate, as it does not reach the

observed number in any of the 10,000 simulations.

According to the ETAS iso-r and ETAS aniso-r models, the

observed number of events would be a possible, but rather

unlikely scenario, with approximately 2.4 and 3.7% prob-

ability to exceed the observed value. The ETASI models

tend to only moderately (ETASI iso-r) or slightly (ETASI

aniso-r) underestimate the observed number.

To explain this observation, we consider that the size of

this relatively short sequence is predominantly influenced

by the amount of direct aftershocks of the initial M6.4

trigger event. According to the model parameter estimates

in Table 2 and Eq. (11), the M6.4 trigger event would only

produce approximately 17 direct aftershocks in the ETAS

conventional model, compared to 46 (ETAS iso-r), 49

(ETAS aniso-r), 66 (ETASI iso-r) and 74 (ETASI aniso-r)

Fig. 4 Strike and relative rupture position optimization using initial

ETAS parameter guesses D ¼ 0:0025; c ¼ 1:78; q ¼ 1:71. a, b: Sum
of forward trigger rate contributions to events within one hour against

strike sample (x axis) and relative rupture position sample (curves) for

a the M6.4 Ridgecrest foreshock and b the M7.1 Ridgecrest

mainshock. Text boxes show strike and relative rupture position

estimates at the curve maxima. c, d: Fitted rupture segments through

cloud of aftershocks after c the M6.4 Ridgecrest foreshock and d the

M7.1 Ridgecrest mainshock. Darker red and blue points represent

aftershocks within the first hour after the respective trigger event,

yellow and lighter blue points represent aftershocks within the first 30

hours. Yellow pentagram symbolizes Mw6.4 foreshock, and yellow

hexagram marks Mw7.1 mainshock. Thick black lines represent

estimated rupture locations according to the strikes and relative

rupture positions estimated in a and b.
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in the other models. The larger the parameter a, the more

direct aftershocks are expected for the M6.4 event.

As argued in the Methods section, the local restriction of

the spatial kernels prevents a disproportionate triggering

power of small events and in return increases the direct

aftershock productivity of the stronger events, character-

ized by a considerable increase of the parameter a in the

non-conventional models (Grimm et al. 2021). Besides, the

application of the ETASI model accounts for missing

aftershock records after strong trigger events and corrects

for the biased, underestimated aftershock productivity,

leading to an additional increase of a (Hainzl 2021).

Finally, we note that the majority of the M[ 6 mainshocks

included in the estimation time window from 1987 until

2018, are characterized by anisotropic aftershock patterns.

Consequently, more events are associated as direct after-

shocks of the strong mainshocks when we estimate the

parameters with the ETAS aniso-r or the ETASI aniso-r

model.

4.1.2 Predicted largest aftershock magnitude

Figure 5b shows the predicted pdfs of the largest after-

shock magnitude in the synthetic sequences, assuming that

the Gutenberg-Richter distribution holds over the entire

magnitude range up to the largest values. For each of the

five models, a kernel density function was computed for the

10,000 largest magnitude samples. In all models, the

observed M7.1 event would have been an extremely rare

case, with exceedance probabilities

Pðlargest magnitude� 7:1Þ� 0:43%. Even the second

largest, observed aftershock magnitude (M ¼ 5:4) was not

reached in approximately 75% of the simulations of the

best model (ETASI aniso-r).

To interpret this result, think of the largest aftershock

magnitude as the largest order statistic of the sample of

simulated events in a simulation run. Then, the expected

value of the sample maximum (i.e. the largest aftershock)

increases if (1) the sequence size becomes larger or (2) if

the magnitudes in the sample are distributed in a way that

they favor high values.

The underestimations of the observed sequence size,

shown in Fig. 5a and discussed earlier, cannot sufficiently

explain the miss-match of the predicted largest aftershock

magnitudes. Even the observed sample size (633 events)

would produce a M7.1 event with a probability of less than

1%, given the generic California estimates for the FMD

with b ¼ 0:98 (ETAS models) or b ¼ 1:01 (ETASI models;

see Table 2). If b ¼ 1, then each magnitude increment by 1

leads to a 10 times smaller probability of occurrence.

Therefore, one M7.1 event is only obtained, on average, for

a sequence with 100,000 aftershocks.

According to the results in Table 2, all models estimated

significantly smaller values b\0:8 for the observed

Ridgecrest M6.4 sequence, which favors the occurrence of

strong events. Note that the b estimates of the three ETAS

models are biased, because they are fitted for the ’’true’’

FMD using the evidently short-term incomplete M6.4

sequence event record (see Fig. 1c). The ETASI models

account for the missing smaller magnitudes and therefore

lead to corrected, larger b values.

If we would simulate the Ridgecrest M6.4 sequence

using its own estimation results (note that this is not a valid

forecasting experiment, but used for illustration purposes),

Table 2 Overview of model

results for generic (long-term)

California and Ridgecrest M6.4

parameter estimation

Parameter Generic California Estimates Ridgecrest M6.4 Estimates

ETAS ETASI ETAS ETASI

conv iso-r aniso-r iso-r aniso-r conv iso-r aniso-r iso-r aniso-r

l 1
days

0.16 0.21 0.21 0.21 0.21 0.11 0.30 0.29 0.18 0.30

A 0.027 0.012 0.011 0.010 0.009 0.052 0.024 0.022 0.022 0.019

a 1
mags

1.30 1.87 1.92 1.98 2.05 1.13 1.71 1.75 1.76 1.83

c 1
days

0.004 0.010 0.010 0.005 0.005 0.008 0.015 0.014 0.010 0.007

p 1.06 1.08 1.08 1.09 1.09 1.16 1.09 1.06 1.07 1.04

D Km2 0.085 0.037 0.110 0.037 0.107 0.135 0.085 0.469 0.080 0.399

c 1
mag

1.60 1.86 2.09 1.88 2.10 1.15 1.43 1.55 1.44 1.57

q 1.51 1.03 2.14 1.07 2.20 1.93 1.73 8.98 1.72 8.79

Tb sec 112.8 114.0 18.1 21.1

b 0.98 0.98 0.98 1.01 1.01 0.72 0.72 0.72 0.77 0.79

LL 20,806 17,478 18,209 16,321 17,107 6524 6322 6433 6013 6131

mbranch 0.73 0.60 0.59 0.61 0.60 1.38 1.76 1.89 1.54 1.52

Stochastic Environmental Research and Risk Assessment

123



we would obtain an M� 7:1 event with 10.0% (ETAS

conventional), 25.9% (ETAS iso-r), 53.7% (ETAS aniso-r),

15.6% (ETASI iso-r) and 25.3% (ETASI aniso-r) chance.

4.1.3 Criticality

The branching ratios mbranch, i.e. the average number of

direct aftershocks per event, clearly exceed 1 in each model

Fig. 5 Predicted cdfs of the number of aftershocks (a, c, e) and

predicted pdfs of the largest aftershock magnitude (b, d, f) for

Experiment 1 (a, b), Experiment 2 (c, d) and Experiment 3 (e, f). Each
predicted distribution is based on 10,000 simulated forecasts of the

Ridgecrest M6.4 sequence (a, b) and the Ridgecrest M7.1 sequence

(c–f), using the models indicated in the legend in the top left figure.

Vertical gray lines show the value of the observed sequence
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(see Table 2). According to these models, an earthquake

would trigger more than one direct aftershock on average,

which would cause the sequence to be unstable, with

exponentially increasing activity. The large branching

ratios are mainly driven by the small b values, which

substantially increase the occurrence probability of the

more productive, strong earthquakes.

The instability of the M6.4 sequence could be inter-

preted as an indication of an imminent, strong mainshock.

On the other hand, it is unlikely that the instability is based

on a model error, e.g. due to a substantial misfit of the

b-value due to few magnitude outliers. First, the FMD is

estimated accounting for all earthquakes at equal weights,

regardless of their magnitude. Therefore, the b value

Fig. 6 Predicted spatial event distributions for Experiment 1 (a, b),
Experiment 2 (c, d) and Experiment 3 (e, f). Each predicted

distribution is averaged over 10,000 simulated forecasts of the

Ridgecrest M6.4 sequence (a, b) and the Ridgecrest M7.1 sequence

(c–f), based on the ETASI iso-r model (a, c, e) and the ETASI aniso-r

model (b, d, f) . The color bar indicates the predicted, logarithmic

probability that an event occurs at the respective grid point
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estimate is primarily controlled by the more numerous,

small magnitudes. Secondly, the M7.1 event magnitude

was not included in the b value estimation.

In summary, the generic California parameters are fitted

to a long-term catalog mainly consisting of

stable earthquake sequences and seismically quiet periods.

Therefore, it cannot adequately predict the magnitude

distribution of the M6.4 foreshock sequence, which is

characterized by instability due to a particularly flat FMD.

4.1.4 Spatial distribution

Figure 6a and b show the predicted spatial event distribu-

tions, averaged over the 10,000 simulation runs and eval-

uated on the 1 km � 1 km grid described in the Application

section, for the ETASI iso-r model (in (a)) and the ETASI

aniso-r model (in (b)). We overlay the observed event

locations to the logarithmic heat map of grid cell proba-

bilities. At first glance, the anisotropic spatial forecast in

(b) fits the observed, and clearly non-isotropical event

distribution much better than the isotropic counterpart in

(a).

In the isotropic model, all direct aftershocks are dis-

tributed point-symmetrically around the M6.4 trigger

event. Subsequent secondary triggering then takes place

around the new initiators. In the anisotropic model, the

direct aftershocks are distributed around the fitted rupture

segments of the two orthogonal faults (see Fig. 4). Sub-

sequent trigger generations then spread isotropically (if

M\Maniso) or anisotropically (if M�Maniso) around their

new initiators. In both plots, we can see a pronounced

boundary from green to blue color, indicating the spatial

restriction to one rupture length (isotropic model) and half

a rupture length (anisotropic model) around the trigger

source, according to Eq. (7). Spatial grid cells outside of

this boundary can only be activated by secondary trigger-

ing or background seismicity.

To quantify the quality of the spatial forecasts, we

computed the information gains relative to the ETAS

conventional model as described in the Application sec-

tion. Figure 7c shows the results for Experiment 1 in the

left group of bars. Both anisotropic models lead to a pro-

nounced improvement, which confirms the visual impres-

sion in Fig. 6a and b. The ETAS and ETASI iso-r models,

which differ from the conventional approach in terms of

the local spatial restriction, show a small information gain.

As we can see in Fig. 6a, none of the observed events

occurred outside of the spatial restriction. Therefore, the

restriction leads to a slightly more pronounced accumula-

tion of simulated event locations closer to the M6.4 trigger,

which coincides better with the observation.

4.2 Forecasting experiment 2

In the second forecasting experiment, we simulated the

Ridgecrest M7.1 sequence for a duration of 10 days based

on the same generic California parameters as used for

Experiment 1.

4.2.1 Predicted aftershock productivity

Figure 5c compares the number of aftershocks, predicted

by the five models, to the observed number of 3,273 events.

The forecasts show a very similar setup of curves as in

Experiment 1 (see Fig. 5a). The ETAS conventional model

clearly underestimates the observed number of events. The

ETAS iso-r and aniso-r models reach the observation in

Fig. 7 Summary plots of forecasting results. Predicted probabilities

per model that a the number of aftershocks exceeds the observation

(633 for Ridgecrest M6.4; 3,273 for Ridgecrest M7.1) and b the

largest aftershock magnitude exceeds the observation (7.1 for

Ridgecrest M6.4; 5.5 for Ridgecrest M7.1). Dashed horizontal lines

represent 2:5% and 97:5% quantiles. c Spatial information gains

relative to the ETAS conventional model prediction for the same

experiment. Legend in a holds for all plots
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about 6.5 and 14.1% of the simulation runs. Again, the

ETASI models provide the best approximations.

According to Eq. (11), the M7.1 trigger event would on

average trigger only roughly 53 direct aftershocks in the

ETAS conventional model, compared to 219 in the ETAS

iso-r, 242 in the ETAS aniso-r, 328 in the ETASI iso-r and

387 in the ETASI aniso-r model. As explained in detail for

Experiment 1, the reason is found in the parameter estimate

for a.

4.2.2 Predicted largest aftershock magnitude

Figure 5d shows the predicted pdfs for the largest after-

shock magnitude of the Ridgecrest M7.1 sequence. In

contrast to Experiment 1, all but the conventional model

provide very good forecasts, indicating that the generic,

long-term California estimates of the FMD with b � 1

coincide well with the FMD of the Ridgecrest M7.1

sequence and the instability of the sequence ended with the

occurrence of the M7.1 mainshock. The moderate under-

estimation by the ETAS conventional model can be

explained by the underestimated sequence size, which

substantially reduces the sample size of event magnitudes.

4.2.3 Spatial distribution

Figure 6c and d show the predicted spatial distributions of

aftershock locations, again for the ETASI iso-r and aniso-r

model. The visual impression, that the anisotropic model

provides a substantially better forecast, is confirmed by the

bar plot in Fig. 7c. The information gain by the anisotropic

models is more pronounced for the Ridgecrest M7.1

sequence, because it has a longer rupture extension

(
 68km by Wells and Coppersmith 1994) than the M6.4

event and it did not rupture two orthogonal faults, which

can be approximated more easily by an isotropic kernel.

4.3 Forecasting experiment 3

In the third forecasting experiment, we simulated the 10-

days Ridgecrest M7.1 sequence based on the parameters

fitted to the local Ridgecrest M6.4 foreshock sequence.

Since the instability of the sequence would lead to

exploding forecasts, we assumed the long-term estimated

FMD with b ¼ 1.

4.3.1 Predicted aftershock productivity

Figure 5e shows that the number of aftershocks is predicted

much more similarly by the five models than in Experi-

ments 1 and 2. It suggests that the particular features of the

model versions play a smaller role in the estimation over a

closed, local sequence than in the generic fit over a long-

term catalog with several sequences and seismically quiet

periods in between. The ETAS conventional model reaches

the observation in 4.4% of the simulation runs, the ETASI

aniso-r even overestimates the size of the sequence in

94.1% of the simulations. The other models show very

good predictions.

4.3.2 Predicted largest aftershock magnitude

According to Fig. 5f, our manual choice of b ¼ 1 led to

very realistic predictions of the largest aftershock magni-

tude. Together with the results for the number of after-

shocks, it shows that the Ridgecrest left the unstable state

after the M7.1 event by returning to the generic FMD,

while retaining a similar structure of aftershock

productivity.

4.3.3 Spatial distribution

Finally, Fig. 6e and f suggests that, compared to Experi-

ment 2, the spatial kernels fitted over the Ridgecrest M6.4

sequence are much narrower than those coming from the

generic, long-term model fit. This is confirmed by the

larger estimates of q and the smaller estimates of c in

Table 2. Figure 7c shows that the narrower spatial distri-

bution leads to a more pronounced information gain by the

local restriction and the anisotropy, relative to the ETAS

conventional model.

Note that, to some extent, the predicted spatial distri-

butions show traces of late or secondary aftershocks trig-

gered along the orthogonal M6.4 Ridgecrest fault, in

contrast to very few observed events in that area. This

might be an indication of an underestimated Omori

parameter p or an overestimated c, favoring pronounced

triggering over a longer time period.

4.4 Summary of forecast quality

Figure 7 shows a summary of the quality measures for the

three experiments, with respect to the predicted number of

aftershocks in Fig. 7a, largest aftershock magnitude in

Fig. 7b and spatial aftershock distribution in Fig. 7c. The

conventional model scores worst in each category. It con-

firms the results in Grimm et al. (2021), who argued that

the isotropic and unlimited spatial kernel assumes an

implausibly far trigger reach and leads to underestimated

cluster sizes.

According to Fig. 7a, the ETASI models seem to pre-

dominantly estimate more realistic aftershock productivties

than the ETAS models when fitted over the long-term

Californian catalog (see Experiments 1 and 2). When fitted

over the specific Ridgcrest M6.4 sequence, the bias of an

underestimated aftershock productivity seems to be
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balanced out by not cutting out undetected events. Aniso-

tropic models always lead to larger predicted sequence

sizes, in the case of Experiment 3 even to a substantial

overestimation.

The predictions of the largest aftershock magnitude,

shown in Fig. 7b, are reasonable for all but Experiment 1.

Apparently, the short-term incompleteness bias in the

ETAS models is of much less consequence for the FMD

than for the aftershock productivity.

According to Fig. 7c, as expected, the anisotropic

models predict more realistic spatial event distributions.

The spatial restriction leads to a much smaller

improvement.

4.5 Sensitivity of results

As a sensitivity study, we forecasted the Ridgecrest M7.1

sequence over a duration of 50 days. In a longer time

window, direct aftershock productivity has less dominance,

and is being displaced more and more by secondary trig-

gering. The underestimation of direct aftershock produc-

tivity (e.g. in the ETAS conventional model) typically goes

along with more pronounced secondary triggering, char-

acterized by larger estimates of the productivity constant A,

see Table 2. Therefore, we observed that the ETAS con-

ventional model caught up the missing events over time.

On the other hand, this indicates a temporal distribution of

aftershocks which is not in agreement with the observa-

tions. Other sensitivity tests, such as the model estimation

with varying cut-off magnitudes Mc or different time

windows for the generic California estimates showed

generally stable results.

5 Conclusion

In this article, we combined an ETAS approach with

generalized anisotropic and locally restricted spatial ker-

nels (Grimm et al. 2021) with the ETASI time model of

Hainzl (2021). The new features have the objective to solve

the three major biases of the conventional ETAS model,

which are the isotropic and spatially unlimited kernel as

well as the neglection of short-term incompleteness in the

fitted event records.

We estimated five different versions of the new ETASI

time-space model to a generic, long-term Californian event

set and to the specific Ridgecrest M6.4 foreshock sequence.

Then, we applied the fitted model parameters to generate

synthetic forecasts of the Ridgecrest M6.4 and the M7.1

sequences, which we analyzed regarding the predicted size

of the sequence, largest aftershock magnitude and spatial

aftershock distribution.

The results indicate that the ETAS conventional model

leads to a substantial underestimation of the number of

aftershocks due to its disproportionately small estimates of

the direct aftershock productivity for the M6.4 and M7.1

trigger events. The locally restricted ETAS models without

ETASI-extension provide more realistic, but still underes-

timated predictions, as they are affected by the bias of

short-term incomplete event sequences in the fitted event

set. The combination of ETASI model with locally

restricted spatial kernel seems to solve the bias and pro-

vides the most robust predictions in the forecasting

experiments. The anisotropy of the spatial kernel has a

positive impact on the model estimation, however, shows

its strength more clearly in the prediction of the spatial

event distribution of aftershocks.

More as a by-product, we find that the Ridgecrest M6.4

foreshock sequence showed instable behavior, favoring

strong aftershocks by a small Gutenberg-Richter parameter

b\0:8. The instability of the foreshock sequence can be

interpreted as an indication of an imminent strong main-

shock. In consequence, models fitted on the long-term,

stable Californian event records cannot adequately predict

the magnitude distribution of this sequence.

The new model provides a better understanding of

spatio-temporal earthquake clustering and solves three

major biases of the conventional ETAS model at once.

Particularly, it leads to better estimates of the aftershock

productivity and to improved forecasts of the size of a

sequence and the spatial distribution of aftershocks. These

improvements may be of major interest for short-term risk

assessment during an on-going aftershock sequence, par-

ticularly for the risk of a second, damaging earthquake

following the initial trigger event. The anisotropic spatial

forecast of aftershock locations enables desaster response

managers to take actions in areas at risk where particularly

high aftershock activity is expected.

Future work should test the forecast quality for other

earthquake sequences. It would be interesting to address

the question whether the ETASI time-space model can be

used to reliably detect the instability of a live sequence,

which could have positive impacts on emergency man-

agement during on-going sequences. An evaluation of the

goodness of fit for the temporal event distribution should

be included into such analyses.

6 Data and resources

The earthquake event set for California has been down-

loaded from the Southern California Earthquake Data

Center (https://scedc.caltech.edu/data/alt-2011-dd-hauks

son-yang-shearer.html, last accessed on October 25, 2021).

Results and figures were produced using Matlab
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software. The source code for model estimation and sim-

ulation is made freely available by the first author in

the Github repository https://github.com/ChrGrimm/

ETASanisotropic.
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Marsan D, Lengliné O (2008) Extending earthquakes’ reach through

cascading. Science, 319(5866):1076–1079. https://doi.org/10.

1126/science.1148783. ISSN: 00368075

Mizrahi L, Nandan S, Wiemer S (2021) The effect of declustering on

the size distribution of mainshocks. Seismol Res Lett. https://doi.

org/10.1785/0220200231 (ISSN: 23318422)
Ogata Y (1988) Statistical models for earthquake occurrences and

residual analysis for point processes. J Am Stat Assoc

83(401):9–27 (ISSN: 0162-1459)
Ogata Y (1998) Space-time point-process models for earthquake

occurrences. Ann Inst Stat Math 50(2):379–402 (ISSN:
00203157)

Ogata Y (2011) Significant improvements of the space-time ETAS

model for forecasting of accurate baseline seismicity. Earth

Stochastic Environmental Research and Risk Assessment

123

https://github.com/ChrGrimm/ETASanisotropic
https://github.com/ChrGrimm/ETASanisotropic
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1029/2018JB015518
https://doi.org/10.1029/2018JB015518
https://doi.org/10.1785/0120210097
https://doi.org/10.1785/0120210097
https://doi.org/10.1038/156371a0
https://doi.org/10.1038/156371a0
https://doi.org/10.1785/0220150211
https://doi.org/10.1785/0220150211
https://doi.org/10.1002/2016JB013319
https://doi.org/10.1002/2016JB013319
https://doi.org/10.1785/0120210146
https://doi.org/10.1785/0120210146
https://doi.org/10.1785/0120070256
https://doi.org/10.1785/0120070256
https://doi.org/10.1785/0120120247
https://doi.org/10.1785/0120120247
https://doi.org/10.1785/0120120247
https://doi.org/10.1785/0120120247
https://doi.org/10.1093/gji/ggv524
https://doi.org/10.1785/0120120010
https://doi.org/10.1785/0120120010
https://doi.org/10.1785/0120090130
https://doi.org/10.1785/0120090130
https://doi.org/10.18637/jss.v088.c01
https://doi.org/10.18637/jss.v088.c01
https://doi.org/10.1002/2016GL069748
https://doi.org/10.1002/2016GL069748
https://doi.org/10.1029/2020JB020329
https://doi.org/10.1126/science.1148783
https://doi.org/10.1126/science.1148783
https://doi.org/10.1785/0220200231
https://doi.org/10.1785/0220200231


Planets Space 63(3):217–229. https://doi.org/10.5047/eps.2010.

09.001 (ISSN: 18805981)
Ogata Y, Zhuang J (2006) Space-time ETAS models and an improved

extension. Tectonophysics 413(1–2):13–23. https://doi.org/10.

1016/j.tecto.2005.10.016 (ISSN: 00401951)
Omi T, Ogata Y, Hirata Y, Aihara K (2013) Forecasting large

aftershocks within one day after the main shock. Sci Rep 3:1–7.

https://doi.org/10.1038/srep02218 (ISSN: 20452322)
Omi T, Ogata Y, Hirata Y, Aihara K (2014) Estimating the ETAS

model from an early aftershock sequence. Geophys Res Lett

41:850–857. https://doi.org/10.1002/2013GL058958 (ISSN:
19448007)

Page MT, van Der Elst N, Hardebeck J, Felzer K, Michael AJ (2016)

Three ingredients for improved global aftershock forecasts:

tectonic region, time-dependent catalog incompleteness, and

intersequence variability. Bull Seismol Soc Am

106(5):2290–2301. https://doi.org/10.1785/0120160073 (ISSN:
19433573)

Rhoades DA, Gerstenberger MC, Christophersen A, Zechar JD,

Schorlemmer D, Werner MJ, Jordan TH (2014) Regional

earthquake likelihood models II: information gains of multi-

plicative hybrids. Bull Seismol Soc Am 104(6):3072–3083.

https://doi.org/10.1785/0120140035 (ISSN: 19433573)
Seif S, Mignan A, Zechar JD, Werner MJ, Wiemer S (2017)

Estimating ETAS: the effects of truncation, missing data, and

model assumptions. J Geophys Res Solid Earth 122(1):449–469.

https://doi.org/10.1002/2016JB012809 (ISSN: 21699356)
Utsu T, Ogata Y, Matsu’ura RS (1995) The centenary of the Omori

formula for a decay law of aftershock activity. J Phys Earth

43:1–33

Wells DL, Coppersmith KJ (1994) New empirical relationships

among magnitude, rupture length, rupture width, rupture area,

and surface displacements. Bull Seismol Soc Am

84(4):974–1002 (ISSN 0037-1106)
Zhang L, Werner MJ, Goda K (2018) Spatiotemporal seismic hazard

and risk assessment of aftershocks of M 9 megathrust earth-

quakes. Bull Seismol Soc Am 108(6):3313–3335. https://doi.org/

10.1785/0120180126

Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of

space-time earthquake occurrences. J Am Stat Assoc

97(458):369–380. https://doi.org/10.1198/016214502760046925

(ISSN: 01621459)
Zhuang J, Ogata Y, Wang T (2017) Data completeness of the

Kumamoto earthquake sequence in the JMA catalog and its

influence on the estimation of the ETAS parameters. Earth

Planets Space 69:36. https://doi.org/10.1186/s40623-017-0614-6

(ISSN: 18805981)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Stochastic Environmental Research and Risk Assessment

123

https://doi.org/10.5047/eps.2010.09.001
https://doi.org/10.5047/eps.2010.09.001
https://doi.org/10.1016/j.tecto.2005.10.016
https://doi.org/10.1016/j.tecto.2005.10.016
https://doi.org/10.1038/srep02218
https://doi.org/10.1002/2013GL058958
https://doi.org/10.1785/0120160073
https://doi.org/10.1785/0120140035
https://doi.org/10.1002/2016JB012809
https://doi.org/10.1785/0120180126
https://doi.org/10.1785/0120180126
https://doi.org/10.1198/016214502760046925
https://doi.org/10.1186/s40623-017-0614-6


RISE – Real-Time Earthquake Risk Reduction for a Resilient Europe 

 

29.8.2022 10 

 

Liability Claim 

The European Commission is not responsible for any that may be made of the information contained in this 

document. Also, responsibility for the information and views expressed in this document lies entirely with the 

author(s). 
 


	Papers.pdf
	JGR Solid Earth - 2022 - Churchill - Afterslip Moment Scaling and Variability From a Global Compilation of Estimates.pdf
	Afterslip Moment Scaling and Variability From a Global Compilation of Estimates
	Abstract
	Plain Language Summary
	1. Introduction
	2. Background
	2.1. Observations and Mechanical Interpretation
	2.2. Afterslip and the Mainshock and Fault Setting
	2.3. Methods and Limitations of Observation and Modeling

	3. Data Compilation and Methods
	3.1. Compilation From the Literature
	3.2. Compilation of Mainshock Data
	3.3. Compilation of Tectonic Data
	3.4. Statistical Tests

	4. Results
	4.1. The Database
	4.2. Afterslip Moment Scaling and Variation
	4.3. Temporal Dependence and Uncertainty of Individual Mrel Estimates
	4.4. Factors Contributing to Mrel Variation
	4.5. Afterslip Depth Analysis

	5. Discussion
	5.1. Afterslip and Coseismic Moment Scaling
	5.2. Mainshock and Fault Setting Factors
	5.3. Data and Modeling Factors

	6. Conclusion
	Data Availability Statement
	References


	Grimm_et_al_2022b.pdf
	Solving three major biases of the ETAS model to improve forecasts of the 2019 Ridgecrest sequence
	Abstract
	Introduction
	Bias 1: isotropic spatial distribution
	Bias 2: infinite spatial extent
	Bias 3: short-term aftershock incompleteness (STAI)
	Scope of this article

	Methods
	ETAS-model
	ETASI model
	Rate-dependent iIncompleteness
	Model formulation
	Log-likelihood optimization

	Generalized anisotropic spatial kernel
	Conventional isotropic kernel
	Anisotropic generalization
	Local spatial restriction

	Estimation of strike and epicenter location
	Estimation of spatial integral

	Application
	Data
	Forecasting experiments
	Experiment 1
	Experiment 2
	Experiment 3

	Fitted models
	Simulation process
	Attributes and measures
	Strike and rupture position estimates


	Results and discussion
	Forecasting experiment 1
	Predicted aftershock productivity
	Predicted largest aftershock magnitude
	Criticality
	Spatial distribution

	Forecasting experiment 2
	Predicted aftershock productivity
	Predicted largest aftershock magnitude
	Spatial distribution

	Forecasting experiment 3
	Predicted aftershock productivity
	Predicted largest aftershock magnitude
	Spatial distribution

	Summary of forecast quality
	Sensitivity of results

	Conclusion
	Data and resources
	Authors contribution
	Funding
	References


	Hermann_et_al_2022.pdf
	Introduction
	Results
	Description of clusters
	Cluster-based MFD analysis using the whole sequence
	Cluster-based MFD analysis using temporal subsets

	Discussion
	Methods
	High-resolution earthquake catalog of the sequence
	Creating spatial earthquake clusters and temporal subclusters
	Earthquake statistics
	Prior seismicity






