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Summary 

Within the RISE work package 4.4, the application of Structural Health Monitoring (SHM) to near-
real-time post-earthquake damage assessment of buildings is investigated. In absence of means 
to measure damage directly, continuously monitored data, such as accelerations, which are indi-
rectly linked to damage, are processed in order to answer the questions: is the building safe for 
occupancy (green tag)? Is damage expected in the building (amber tag)? Is the probability of 
extensive damage significant and the building should be evacuated (red tag)? 
 
A set of damage-sensitive features (DSFs) that can be extracted from measured acceleration 
signals has been developed to detect onset of damage. DSFs correlate with the amount of nonlin-
earity a structure is exposed to and the related structural degradation. Combined with a physics-
based (engineering) model, DSFs contain information regarding the damage state of a building. 
In addition, the statistical treatment of DSFs enables tracking the accumulation of building damage 
over time, reducing the need for repeated inspections during seismic sequences. 
 
Bridging the gap between building-specific information that stems from monitoring data and ap-
proximate building models for regional damage and loss estimation, pre-defined damage-state 
probabilities with respect DSFs are formulated in a similar manner to classical fragility curves. 
 
The use of DSF-based fragility curves and data-driven damage detection is demonstrated for a 
case study on data from a shaking-table and the coding and evaluation of key steps is offered in 
an accompanying html demonstrator (https://yreuland.github.io/SHM_Demonstra-
tor/SHM_Demonstration_RISE.html). The successful tagging of the building – in agreement with 
observations made on the tested specimen – underlines the potential of SHM to reduce uncertain-
ties in post-earthquake damage assessment and accelerate building tagging, thus increasing the 
resilience of European communities with respect to damaging earthquakes. 

1. Introduction into SHM 

The enforcement of modern building design codes and the evolution of construction techniques 
have contributed to reducing seismic risk. However, modern seismic design criteria for residential 
buildings focus on life safety of building occupants with performance-based earthquake engineer-
ing geared toward tolerating damage under strong ground motions. Therefore, earthquakes will 
continue to threaten the integrity of the built environment and trigger post-earthquake damage 
and loss assessment. As not all buildings react in the same way to earthquake actions, a rapid 
understanding of the extent of damage to buildings and its consequences on providing safe shelter 
for the population is a crucial contribution to an earthquake-resilient Europe. Currently, post-
earthquake assessment of buildings relies on expert-conducted visual inspections that, despite 
being increasingly standardized, suffer from possible subjectivity (Galloway et al., 2019) and delay 
rapid recovery due to the time required to inspect large building stocks (Mcentire & Cope, 2004). 
 
However, recent advances in sensor development have resulted in an increasing availability of 
sensing hardware at low cost, thus making permanent installations of sensors a realistic outlook, 
even for conventional buildings that form the largest portion of the existing building stock. Struc-
tural health monitoring (SHM) offers the tools to analyze such a permanent inflow of sensor data 
and retrieve information regarding the structural state (health) of the structure. In the absence 
of means for direct measurements of building damage, indicators of damage need to be derived 
from indirect measurements, such as accelerations. 
 
Traditionally, the correlation between the stiffness of a structure and the vibration modes has 
been leveraged and therefore, many applications of SHM for the built environment rely on changes 
in vibrational properties to extract indicators of damage (Carden & Fanning, 2004; Salawu, 1997). 
Changes in natural frequencies or damping coefficients have been linked with damage (Basseville 
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et al., 2004; Gentile et al., 2016a; Lorenzoni et al., 2018; Vidal et al., 2014), while mode shapes 
or mode-shape curvature have been found to be correlated with the location of damage (Giordano 
et al., 2021; Giordano & Limongelli, 2020; Shokrani et al., 2018).  
 
However, relying on data alone often proves insufficient. Fully data-driven classification of dam-
aged buildings into categories that indicate damage severity would, for instance, require large 
datasets to derive – or train – the thresholds that are required for damage classification, either 
based on statistical damage detection or machine-learning (ML) applications (Avci et al., 2021), 
which need to feed on relevant seismic response data. Yet, historic monitoring data of earthquake-
damaged buildings are scarce. In complementing the needed information, physics-based models 
can be employed to refine the identification potential in terms of sharpening detection and hinting 
to localization (Jaishi & Ren, 2006; Kaya et al., 2015; Kita et al., 2021). The two aforementioned 
tasks comprise only the first two levels of damage identification (Rytter, 1993), and do not typi-
cally entail a quantification of damage (third level), which may then lead to remaining useful life 
assessment (fourth level). In achieving these higher-end tasks, model-based SHM is typically 
required (Trevlopoulos & Guéguen, 2016), but often entails the use of computationally expensive 
and structure-specific models (Atamturktur & Laman, 2012; Kita et al., 2020; Reuland et al., 
2019a, 2019b). 
 
In this work, we exploit a hybrid approach which capitalizes on the fusion of monitoring data from 
few monitored instances and physics-based models for automated building tagging. We propose 
a framework based on DSFs to assess the presence of damage and – by comparison to DSF-based 
fragility curves that are previously simulated – enables a probabilistic attribution of building tag. 
This approach can be employed for single buildings, yet, given the formulation of fragility func-
tions, is also compatible with regional post-earthquake loss and damage assessment. 

Integration within the RISE project 

SHM for rapid post-earthquake damage assessment offers numerous synergies with other RISE 
objectives. Although the demonstrator that is provided here is focused on a single building, the 
formulation of the seismic SHM framework offers the flexibility for application at regional scale. 
Reducing the uncertainty from simplified regional loss assessment methodologies through moni-
toring data – possibly combined with methodologies to use information from a small subset of 
buildings to reduce the regional loss-assessment uncertainty, as proposed within task 4.3 (Bo-
denmann et al., 2021; Reuland et al., 2022) – benefits rapid-loss assessment (task 4.1) and 
prediction of regional repair-and-recovery efforts (task 4.3). The regional application of SHM for 
building tagging will be further investigated in collaboration with task 6.1. 
 
SHM modules can readily signal damage detection, with more refined algorithms taking on the 
assessment of localization and severity of damage. However, post-earthquake decision-making 
ideally also assesses the influence of damage and its accumulation on the vulnerability of buildings 
in their post-earthquake state to deduce the state-dependent risk of its inhabitants. State-de-
pendent fragility curves, such as those proposed in task 4.2, may be combined with SHM-based 
prediction of damage states to reduce the uncertainty of the fragility of damaged buildings after 
earthquakes. 
 
In addition to reducing uncertainties and thereby improving post-earthquake decisions, SHM has 
the potential to significantly reduce the downtime related to post-earthquake assessment of build-
ings: accelerating the attribution of green tags – corresponding to safe buildings – from several 
days or even weeks, as is the case for lengthy visual inspections, to minutes, as could be the case 
with automated building tagging, may, for instance, be a crucial contribution towards earthquake-
resilient communities. Together with task 4.6, we will shed light on the tradeoff between these 
benefits and the cost of structural health monitoring. 
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2. Framework for near-real-time data-driven damage tagging 

Automated near-real time tagging of buildings after earthquakes requires information on the dam-
age that has been sustained during the earthquake. Several methodologies can be followed for 
damage assessment and building tagging at regional scale, with an overview offered in Figure 1. 
 

 
Figure 1 A classification of methodologies for post-earthquake damage assessment. 

Traditional rapid loss assessment relies on shake-maps that are derived from seismic network 
stations (Wald et al., 1999), which may form a dense network in regions with high seismic hazard, 
such as central Italy, but are coarsely spaced in regions with low-to-moderate seismicity. As a 
result, the intensity measure at the exact location of buildings is often not available, yet an esti-
mate may be computed (Worden et al., 2018). The uncertainties underlying such estimates un-
dermine decision-making, when seismic network stations are scarce (Bodenmann et al., 2022). 
Moreover, while rapid loss assessment heavily relies on model-based predictions, the regional 
scope of this methodology does not offer precise predictions for individual buildings, as the ap-
proximate nature of both intensity measures and building models is intended for loss predictions 
that are aggregated over hundreds of buildings. 
 
As demonstrated in published work related to this task, pre-earthquake monitoring data can be 
used to reduce the uncertainties in fragility functions that are used for traditional rapid loss as-
sessment (Martakis, Reuland, Imesch, et al., 2022). However, the uncertainty reduction only af-
fects the material and model parameters of engineering models used to derive fragility curves and 
thus, does not reduce the uncertainties that are inherent to the shake map. The regional fit of 
generic fragility curves – often established for country-wide or continental validity – may also be 
improved together with the precision and accuracy of shake-maps by leveraging small subsets of 
inspected buildings after a damaging earthquake (Bodenmann et al., 2021). While this reduced 
the time required for reliable loss assessment from weeks to days, it does not provide near-real 
time estimates. 
 
The ever-increasing computational power has enabled the use of ML and deep learning applica-
tions (Avci et al., 2021) for transforming raw data or DSFs into damage classes, for instance to 
differentiate healthy and damaged monitoring data or even perform classification of buildings into 
various classes of damage severity of damage (Hoelzl et al., 2022; Sun et al., 2020; Tsuchimoto 
et al., 2021). However, supervised ML approaches require large amount of labelled data and thus, 
cannot be directly applied to the classification of buildings after earthquakes, given the lack of 
historic monitoring data from earthquake-damaged buildings. Owing to this lack of data, relying 
on a limited number of inspected buildings for damage assessment at larger scales has been 
proposed as an alternative to overcome the lack of historic labelled data (Bodenmann et al., 2021; 
Mangalathu et al., 2020; Sheibani & Ou, 2021, 2022; Stojadinović et al., 2022). 
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Another approach to overcome the scarcity of real-world data of damaged structures, is to rely on 
model simulations (Movsessian et al., 2022; Xu & Noh, 2019). However, engineering models con-
tain inherent bias and multiple sources of uncertainty that prevent the realistic representation of 
the measured response. A remedy to this can be sought in transfer learning; a ML technique, 
which aims to transfer knowledge from a source domain, where a large amount of labeled data is 
available, to a target domain, with very limited labeled data (Pan & Yang, 2010). Domain adapta-
tion addresses this task by reducing the distance between the data distributions of the source and 
the target domains and increases the performance by capitalizing on population-based SHM  (Bull 
et al., 2021). 
 
Post-earthquake updating of physics-based models with building-specific monitoring data may 
reduce the uncertainty of model parameters (Reuland et al., 2019). Yet, it requires large amount 
of model simulations and provides building specific information. While such an approach may be 
suitable for buildings with a prominent role in post-earthquake responses, such as community 
centers, schools, and civil-protection offices, its applicability to regional loss assessment is limited. 
 
Statistical anomaly detection is fully data-driven and does not require a physics-based model. 
Such data-driven damage detection rather relies on the deviation between healthy reference data 
and data that characterizes the building behavior during an earthquake. While such data-driven 
methods are helpful in detecting the onset of damage and even provide information about the 
evolution of the severity of damage – as will be explained in Section 4.1 – they may be insufficient 
to tag the buildings based on the lacking correlation between amount of damage and its physical 
meaning. Indeed, typically accelerations are measured and thus, the DSFs that may be derived 
are not directly linked with properties that are used to quantify damage and its influence on the 
building capacity, such as stiffness, strength, nonlinearity, and deformation capacity. 
 
As part of Task 4.4 of the RISE project, we propose an approach that is compatible with current 
regional seismic risk and loss estimation process, namely an approach based on fragility functions. 
With such a method, probabilities of exceeding pre-defined damage states are evaluated with the 
help of a physics-based simulators exploiting characteristic building typologies. However, unlike 
typical fragility functions, the probability of exceeding pre-defined damage states are not ex-
pressed as a function of intensity measures (IMs), which only characterize the ground-motion 
intensity at the base of a building, but as a function of DSFs, which contain critical information on 
structural condition. 
 
A schematic representation of such a framework is shown in Figure 2. 
 

 
Figure 2 Methodology for near-real time building tagging based on pre-simulated fragility curves. These fragility 
curves are formulated with respect to measurable DSFs. 
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Data-driven building tagging relies on the availability of permanently monitored buildings. The 
rapid processing of dynamic sensor data (i.e., acceleration time series) enables near-real-time 
estimates of the damage state. DSFs, as elaborated in the next section, can be derived from the 
measured time series to assess the presence and severity of damage. 
 
The contrasting of monitoring-derived DSFs against thresholds, which can be data-driven or 
model-defined, allows to tag a building via labels that reflect discrete damage states (Sivori et al., 
2022). A convenient way to represent such a tagging is via use of a Red-Amber-Green (RAG) alert 
system, which can be used to for instance signal evacuation (red), damage (amber), and an un-
damaged, safe for occupancy (green), state. Damage-tag probabilities can be formulated in a 
manner similar to classical fragility functions that link the probability of exceeding damage-states 
to IMs, as shown in Figure 2. Following the fragility functions formulation, IMs which only contain 
information about the ground-motion, are replaced with DSFs, thus contributing with monitoring-
derived information on structural state. 
 
Primary instances of DSFs that are particularly targeted at quantification of seismic-induced dam-
age in building structures are reviewed in the following Section 3 and evaluated with respect to 
their correlation with engineering-demand parameters and their robustness to noise. 
 
Then, in Section 4 the application of near-real-time building tagging is demonstrated on an ex-
perimental case study. Owing to the potentially limited realism of model simulations, when com-
pared to real building behavior, Section 5 contains a proposal to adapt a pre-trained damage 
classifier with limited healthy data from permanently monitored buildings. 

3. Damage-sensitive features 

Exploiting the increasing availability and decreasing costs of sensor technologies that allow for 
measurement of building vibration response, the use of modal properties – mostly derived from 
ambient vibrations – has been shown to carry information which allows to detect structural dam-
age (Akhlaghi et al., 2021; Lorenzoni et al., 2018; Ou et al., 2016; Vidal et al., 2014). DSFs, i.e. 
metrics that contain useful information to characterize the state of the structure, can be extracted 
from measured vibration time-series, possibly in near-real time, a feature which is particularly 
attractive for rapid loss assessment. Such DSFs can subsequently be used to construct a damage 
index (Farrar & Worden, 2006), whose probabilistic treatment allows to build classifiers for dam-
age detection and localization (Abdeljaber et al., 2017; Azimi et al., 2020; Sohn et al., 2002). 
Such data-driven indicators can further serve as a starting point for the updating of structural 
models, which can be used to forecast residual capacity and remaining useful life (Limongelli et 
al., 2016) after the strike of an earthquake event.   
 
In deriving data-driven indicators, Noh et al. (2011) proposed DSFs that are based on the wavelet 
decomposition, acknowledging the short and non-stationary nature of earthquake response sig-
nals. The time-frequency representation of wavelet decomposition is used to derive three DSFs 
based on the stiffness reduction that is generally linked with damage. Changes in the frequency-
domain transmissibility have been shown before to indicate structural damage (Johnson & Adams, 
2002). Luo et al. (2021) have proposed a DSF that compresses changes in transmissibility using 
a colinearity metric. 
 
While in many applications DSFs evaluate changes in modal properties derived from ambient vi-
brations, potential damage that occurs during seismic events may be undetectable at low ampli-
tudes of shaking, due to the closing of breathing cracks or the compensating effect of multiple 
damage sources (Astorga et al., 2018; Martakis et al., 2021a; Song et al., 2019). Thus, permanent 
monitoring installations are eminent for damage identification tasks, as they provide valuable 
information regarding the state of the structure prior, during and after seismic events. 
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Many vibration-based damage detection approaches have been applied and tested on slender or 
flexible structures, such as high-rise buildings or bridges (Gentile et al., 2016; Limongelli, 2014; 
Roselli et al., 2018; Solís et al., 2013; Tatsis et al., 2017). While slender structures enable the 
modal identification even for higher modes, which are often found to be most sensitive to damage, 
their dynamic characteristics do not fit the profile of stiff unreinforced masonry (URM) buildings, 
which present the most vulnerable elements within the European building stock. Such masonry 
buildings are often characterized by high lateral stiffness, local failure modes and redundancy in 
the lateral load-resisting system. The dynamic response of masonry buildings is often governed 
by a single dominant mode in each direction, posing an additional challenge to many existing 
approaches for damage detection. In addition, unlike steel or modern reinforced concrete struc-
tures that can be characterized as ductile, masonry buildings exhibit sudden and permanent stiff-
ness changes, which results in a rather brittle behavior and requires DSFs that can pick up smallest 
changes in the dynamic behavior in short time windows. 
 
Meaningful distribution of sensors within a building further enables localization of damaged regions 
of the building; when applying DSFs to subsystems of the buildings, these can offer an indication 
of the floor-wise distribution of damage severity, as discussed in the accompanying html file 
(https://yreuland.github.io/SHM_Demonstrator/SHM_Demonstration_RISE.html). 

3.1 Formulation of damage-sensitive features 

The following Table 1 summarizes the main features selected as part of the real-time tagging tool 
we develop in Task 4.4. A step-by-step description of assembly of these figures on a particular 
case study is offered in the accompanying html demonstrator, coded in MATLAB. The DSFs cover 
three approaches: 

- Changes in transmissibility, which offers an indication of the frequency ranges, for which the 
signal is amplified. In buildings, peaks in transmissibility are linked to the stiffness of the struc-
ture above the reference sensor. Thus, a change in the transmissibility, detected as a loss of 
collinearity between a reference transmissibility and the transmissibility of the signal of a new 
data window, indicates stiffness reduction, as encountered during nonlinearity or residual 
damage. The TAC, based on the transmissibility, operates in the frequency domain. 

- Changes in the stiffness proxy, which is obtained through numerical integration of available 
acceleration signals, operates in the time domain. When comparing with the KPRX from 
healthy reference data, this DSF provides a direct measure of stiffness loss. 

- The distribution of energy in the frequency domain, obtained at discrete wavelet compo-
nents, operates in the frequency domain picks up stiffness reduction through a shift of 
energy from the fundamental frequency towards lower frequency values. As the energy 
ratio is highly dependent on the ground motion, this DSF, proposed by Noh et al. (2011), 
has been reformulated in relative terms as the ratio between the energy spread of an 
output sensor and the energy spread of an input sensor. 

 
Table 1 Summary of DSF figures adopted in the Task 4.4. formulation 

DSF Mathematical formulation Description 

Transmissibility As-
surance Criterion be-
tween a sensor pair 
(input and output) 

𝑻𝑨𝑪𝒊𝒐
𝒎 

 
(Zhou et al., 2017) 

TAC୧୭
୫ ൌ

ฬT୧୭
୰ ቀω୫ ቁ


T୧୭
ୣ ቀω୫ ቁฬ

ଶ

ฬT୧୭
୰ ቀω୫ ቁ


T୧୭
୰ ቀω୫ ቁฬ ฬT୧୭

ୣ ቀω୫ ቁ


T୧୭
ୣ ቀω୫ ቁฬ

 

 
is the TAC between sensors 𝑖 (input) and 𝑜 
(output). 
 
𝑇 ൌ




 :transmissibility between 𝑥పሷ  and 𝑥ሷ ; 

𝑃௫௫: spectral density amplitude of signal xሷ; 

This DSF returns the colin-
earity of the reference 
transmissibility and the 
transmissibility of a new - 
potentially damaged - data 
window. 
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𝜔 : frequency range of interest, correspond-

ing to the 𝑚th mode; 
𝑟 , 𝑒: reference and new state to be evalu-
ated, respectively; 
∙் denotes the complex conjugate of a vector. 

Stiffness proxy 
𝑲𝑷𝑹𝑿𝒊𝒐

𝒎 

𝐾𝑃𝑅𝑋ሺ𝑡ሻ  ൌ  
∑ 𝑎ௗሺ𝑡ሻ

ௗୀ

𝑑ሺ𝑡ሻ െ 𝑑ప ሺ𝑡ሻ
 

𝑎ௗ: the acceleration measured at instant 𝑡 at 
location 𝑑𝑜𝑓; 
𝑑ప  and 𝑑: estimated displacement, of the in-
put and output signal, respectively, obtained 
through numerical integration of the available 
acceleration signals.  

This DSF is a direct approx-
imator of the stiffness of the 
structural system. 

Distribution of en-
ergy in the fre-
quency domain 

𝑴𝑬𝑹𝒊𝒐
𝒎 

 
(Noh et al., 2011) 

𝑀𝐸𝑅
 ൌ

𝑀𝐸,
 

𝑀𝐸,
  

is the relative energy distribution between in-
put and output, where the energy distribution, 
ME, is defined as: 
 

𝑀𝐸ௗ, ൌ
𝐸ௗሺ𝜓ሻ

∑ 𝐸ௗ൫𝜓,൯
ୀଵ

 

 
𝐸ௗ: energy at discrete wavelet coefficients of 
a given degree of freedom, 𝑑𝑜𝑓; 
𝜓: denotes the wavelet coefficient of the m-th 
vibration mode; 
𝜓,: energy at 𝑖 discrete wavelet coefficients 
that are used as reference spread around the 
vibration mode, typically in the range 
ሾ0.5𝑓, 𝑓 ሿ, where 𝑓 is the frequency corre-
sponding to the 𝑚th mode. 
 

The ratio of the frequency 
of a fundamental mode of 
vibration compared with the 
spread of energy in the sur-
rounding frequency band-
width 

Modal identification 

 

Extracted by means of system identification 
methods (e.g. Frequency Domain Decomposi-
tion) 

Given the non-stationary nature of earthquake 
excitation, modal properties are derived from 
ambient vibrations not only for the reference 
state, but also for the potentially damaged state 
on the basis of post-earthquake measurements.  

Modal properties, such as 
natural frequencies, mode 
shapes, mode shape curva-
tures, and, less frequently, 
damping. 

 

 
3.2 Correlation of damage-sensitive features with engineering demand parame-

ters and damage 

The capacity of the selected DSFs, summarized in Table 1, to indicate the presence and scale with 
the extent of damage is first assessed using model simulations. In Figure 3 the relationship be-
tween the TAC (evaluated for three sensor pairs), KPRX, and MER on one hand and the average 
roof drift ratio (ARDR) on the other hand is shown. In addition, two IMs (PGA and the geometric 
mean of the spectral acceleration at 21 periods) are shown for comparison. The data is generated 
using a multi-degree-of-freedom model – described in Section 4.2 – for simulating the building 
behavior under 50 historical ground motions scaled to 14 amplitude values ranging from 0.02g to 
1.4g. The results are split into two datasets, from a single parameter combination and from 20 
random samples of nonlinear model parameters. 
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When comparing the 𝑇𝐴𝐶ସଵ  (it is recalled that the superscript 1 refers to the first mode and the 
subscript 04 refers to the sensor pair of input DOF 0 and output DOF 4, as defined in Table 1) with 
the two other TAC instances, 𝑇𝐴𝐶ଶସଵ  and 𝑇𝐴𝐶ଵଶ , the former, which covers the first mode of the entire 
structure contains less scatter and is more robust with respect to the nonlinear model parameters. 
The TAC and the MER are very sensitive to damage, delimitating linear from nonlinear dynamic 
responses. The KPRX scales with damage, even for more extensive damage levels induced by 
higher ARDR. While the PGA shows a very large scatter, the mean Sa is informative for lower 
values but present more scatter for higher values, which may not be sufficient for accurate and 
precise post-earthquake tagging and decision making. 
 
These observations are confirmed by the correlation between DSFs/IMs and the maximum plastic 
demand (see Figure 4), which provides the maximum ratio between the maximum transient de-
formation and the yield deformation taken over all masonry walls. The scatter is generally higher 
than for the ARDR and the influence of the nonlinear model parameters is slightly more prominent. 
 

 

 
Figure 3 Relationship between DSFs/IMs and the average roof drift based on model simulations of 50 ground mo-
tions and 22 scales. The dataset is split into results from a single parameter combination (teal) and 20 random 
picks of nonlinear parameters, such as cohesion of masonry, compressive strength of concrete and definition of 
nonlinear shear springs (magenta). 
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Figure 4 Relationship between DSFs/IMs and the residual stiffness reduction of masonry walls at the end of the 
earthquake. Results are based on model simulations of 50 ground motions and 22 scales. The dataset is split into 
results from a single parameter combination (teal) and 20 random picks of nonlinear parameters, such as cohesion 
of masonry, compressive strength of concrete and definition of nonlinear shear springs (magenta). 

 

3.3 Robustness of damage-sensitive features with respect to sensor noise 

Artificial noise is added to the model predictions to assess the robustness of DSFs with respect to 
noise. The evolution of the uncertainty range of derived DSFs produced by evaluating 100 random 
instances of artificial measurement noise is shown in Figure 5 for two earthquake instances, one 
resulting in linear structural response and one pushing the model in the nonlinear range. 
 
The median of the derived DSFs is roughly stable, but the variability increases significantly when 
the noise level exceeds 0.05 𝑚 𝑠ଶ⁄ . This corresponds to high noise levels (signal-to-noise ratio of 
12) and most commercially available sensors are considerably less noisy. Given that the results 
are still reliable, although noisy, for a noise level of 0.1 𝑚 𝑠ଶ⁄ , DSFs are found to be robust with 
respect to noise and suitable for low-cost sensing solutions – such as developed within task 2 of 
the RISE project. 
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Figure 5 Sensitivity of damage-sensitive features to sensor noise (simulated as white noise with increasing stand-
ard deviation). An undamaged (green) and a damaged (red) building state are compared. Uncertainty ranges are 
indicated with error bars and correspond to the range of 100 noise simulations. 

 

4. Demonstration of near-real-time building tagging 

In order to illustrate and demonstrate the components of data-driven damage detection and quan-
tification for SHM-based near-real-time tagging, a shake-table dataset is used. A MATLAB-based 
online tutorial on the damage-tagging is available: https://yreuland.github.io/SHM_Demonstra-
tor/SHM_Demonstration_RISE.html. 
 
A half-scale four-story building has been tested by Beyer et al. (2015). The tested building spec-
imen underwent nine earthquake motions with increasing amplitude, with the last earthquake 
leading to collapse (unstable building) and has therefore been discarded; given SHM is not re-
quired to conclude on collapsed buildings. After each earthquake white-noise (WN) table motions 
have been performed and an EMS-98 damage grade (DG) has been attributed based on visual 
inspection of the test specimen. The main characteristics of the test runs are summarized in Table 
2 and the geometry of the tested building specimen is provided in Figure 6. 
 

 
Figure 6 Geometry of the building specimen tested by Beyer et al. (2015). Figure adapted from Reuland et al. 

(2017). 
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Table 2 Description of shake-table test runs and evolution of damage in the specimen. The tests were based on scal-
ing the ground motion measured at the Ulcinj-Hotel Albatros station during the April 15th, 1979, Montenegro earth-
quake. See Beyer et al. (2015) for detailed descriptions. 

Earthquake # PGA [g] DG [EMS] Damage description 
EQK1 0.08 1 One haircrack in one wall of 1st floor 

EQK2 0.13 1 
Haircracks in one wall of first 2 floors 
and in the construction joint between 
wall and foundation 

EQK3 0.21 1 
Cracks in all masonry walls of first 2 
floors 

EQK4 0.35 2 

Several diagonal cracks over the entire 
wall height of one wall of the 1st floor 
with negligible residual crack width. 
Many flexural cracks in the concrete slab 
of the first floor; Masonry spandrels and 
concrete wall remained undamaged. 

EQK5 0.40 2 Same as previous. 

EQK6 0.76 2 

Significant increase in damage to the 
structure. All masonry walls with diago-
nal cracks at all floors. First and second 
floor walls present residual cracks of 
0.8mm.  

EQK7 0.37 2 

This test, with a smaller amplitude than 
the previous EQK6, was intended to sim-
ulate a possible aftershock but led only 
to very minor additional damage to the 
structure. 

EQK8 0.64 3 

Structure was severely damaged. Dam-
age in the masonry walls started concen-
trating in one diagonal crack. Diagonal 
cracks passed through bricks. 

 

4.1 Detecting the presence of damage 

Data-driven detection of damage requires an initial computation of the ranges that can be related 
to normal – or healthy – behaviour. Statistic damage detection methods rely on the distance 
between the healthy reference distribution and monitored datapoints that belong to an unknown 
damage class to conclude on the presence or absence of damage. When performing SHM on res-
idential buildings, the collection of data to establish such healthy reference ranges is typically 
limited to ambient vibrations, which are produced by wind, micro-tremors, and human activities 
(e.g., traffic and construction site activity). The amplitude of ambient vibrations typically lies be-
tween 1 𝜇𝑚 𝑠ଶ⁄  and 1𝑚𝑚 𝑠ଶ⁄  and the frequency content is theoretically flat (white noise), even if 
local soil conditions may result in non-perfect white noise (WN). 
 
The DSFs are formulated to be independent on the frequency content and amplitude of the exci-
tation, which enables the use of ambient vibrations to establish healthy reference ranges. How-
ever, many structures exhibit small nonlinearities in the elastic range, which does not lead to 
significant residual damage (see Section 5.1). This is especially true for concrete and masonry 
buildings, as these building materials present heterogeneities and discontinuities at the micro-
scale, which leads to the opening and closure of small micro-cracks, when the amplitude of shaking 
increases (Martakis, Reuland, & Chatzi, 2022; Michel et al., 2011). In regions with high seismicity 
with frequent non-destructive earthquakes, measurement data collected under weak earthquakes 
that do not threaten the structural integrity would be preferred to ambient data to reduce the 
amplitude-dependency in the structural response. 
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After establishing the predominant frequency ranges and frequency spectra, the reference data is 
used to derive the statistical distribution of DSFs that correspond to the healthy state of the struc-
ture by splitting the healthy reference data into short time-windows. During this training phase, 
the structural state is assumed healthy. Variations in the DSFs during this training phase result 
from sensor noise, variations in the frequency content of the input motion, and environmental 
conditions that alter the building behavior, such as temperature and humidity. In the dataset used 
for demonstration, the uncertainty in DSFs arises from the first two uncertainty sources as the 
environmental conditions during the shake table-tests were well-controlled. To reduce tempera-
ture-dependent influences on DSFs, reference ranges can be regularly updated, for instance on 
an hourly basis, to reduce the difference in environmental conditions between the reference da-
taset and a new datapoint. An example of healthy reference distributions is shown in Fig. 7 for 
DSFs TAC and MER. A lognormal and normal fit are also shown in the figure and can be used to 
establish confidence intervals. 
 
Based on such confidence ranges from the distribution of healthy datapoints, damage-detection 
thresholds can be established and may be linked with alarm messages, when consistently crossed 
by the measured DSFs. Given that these thresholds are purely data-driven, the link between the 
distance that new datapoints have from the reference distribution and the severity of damage is 
not yet established. Such a correlation may exist, yet multiple buildings need to be monitored to 
learn such correlations from monitoring data (Bodenmann et al., 2021; Goulet et al., 2015). In 
absence of such regional SHM implementations, a larger distance between the reference distribu-
tion and the new datapoints mostly increases the confidence in the assumption that damage is 
present in the structure.  
 

 
Figure 7 Reference distribution of two DSFs, TAC and MER, derived from WN excitation in healthy conditions. 

Based on the healthy reference distributions, the following tags are attributed to the dots for illus-
tration: white in case the datapoint falls within the 95% confidence interval; green if the datapoint 
falls within thresholds increased by 15% with respect to the 95% confidence interval; amber when 
the datapoint exceeds the thresholds increased by 15% with respect to the 95% confidence interval 
but remains with six standard-deviations of the healthy reference data; red if the datapoints falls 
outside six standard-deviations from the median of the healthy reference distribution.  
 
The comparison of the DSFs during the first earthquake (dots) and the 95% confidence interval 
(green shaded area) of healthy reference data is shown in Figure 8 for three DSFs. While the damage 
sustained by the specimen was not significant, some values slightly exceed the thresholds. Several 
reasons can lead to such a behavior: 

 While the reference values are derived for WN conditions, earthquake signals contain tran-
sient effects and do not have a stable frequency content. 

 Masonry and concrete buildings are known to show a reversible amplitude-dependent stiff-
ness reduction due to opening of micro-cracks and elastic nonlinearity (Martakis et al., 
2021a). 
 

The DSFs do not consistently exceed the confidence intervals and return within the confidence 
region towards the end of the earthquake, when the amplitude of shaking reduces, no damage is 
detected. 
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Figure 8 Comparison of three DSFs (top: TAC, middle: MER, bottom: KPRX) measured during EQK1 (see Table 1) 
compared with the 95%-confidence interval of healthy reference data.  

 
The same analysis for the third earthquake signal is shown in Figure 9. The DSFs consistently 
exceed the healthy reference thresholds (indicated with black lines and a dark green shade) and 
even exceed adapted thresholds based on the first two earthquakes. Such adapted thresholds 
may be established when combining data-driven monitoring with visual inspections, for instance. 
Given the consistent exceedance of thresholds for all three DSFs, onset of damage in the structure 
can be confidently concluded. This observation is consistent with the observations on the speci-
men: despite being still classified as DG2, cracks were observed in all in-plane masonry walls of 
the first two floors. 
 
Additional information on data-driven detection of damage for earthquakes EQK2, EQK5, and 
EQK8 can be found in the following online demonstrator: https://yreuland.github.io/SHM_Demon-
strator/SHM_Demonstration_RISE.html. 
 
The probabilistic distribution of the TAC for the fifth earthquake (EQK5) is shown in Figure 10 and 
the probability density function (PDF) is compared between the earthquake data and three refer-
ence datasets: the healthy reference data (Figure 10a), the WN data measured prior to EQK5 
(Figure 10b), and the earthquake data from the preceding EQK4 (Figure 10c). While damage is 
present in the structure (with respect to the healthy condition), no significant increase in damage 
is observed with respect to the previous earthquake EQK4, neither with respect to the earthquake 
signal itself nor with the WN data measured prior to EQK5. This capacity of statistical damage 
detection to keep track of both, the absolute damage and the increase in damage, is of interest 
for damage accumulation in buildings during earthquake sequences and thus, enables time-de-
pendent damage characterization. 
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Figure 9 Comparison of DSFs (top: TAC, middle: MER, bottom: KPRX) measured during EQK3 (see Table 2) with the 
95%-confidence interval of healthy reference data and an extended confidence interval (shown in light green) 
based on the data from the first two earthquakes.  

 
Figure 10 Probabilistic evaluation of the TAC, computed for short and overlapping time windows. The PDF of the TAC 
is measured during EQK5 is compared with: (a) the healthy reference WN signal, (b) the WN signal measured be-
tween EQK4 and EQK5, and (c) the TAC measured during EQK4. While the building is damaged during earthquake 5 
(as can be seen in subplot a), little additional damage with respect to the previous earthquake is sustained by the 
structure. This underlines the capacity of DSFs to track the evolution of damage over time, for instance during 
earthquake sequences. 
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The PDF of the TAC during EQK6 is shown in Figure 11. Unlike for EQK5, this earthquake intro-
duced significant damage into the structure. This increase to the damage is not only detected by 
the higher values of the TAC with respect to the healthy reference signal (Figure 11c) when com-
pared with EQK5 (Figure 10a) but also by the strong divergence with the pre-earthquake WN 
signals (Figure 11b), which are representative of the damage-state prior the EQK6.  
 

 
Figure 11 Probabilistic evaluation of the TAC, computed for short and overlapping time windows. The PDF of the TAC 
is measured during EQK6 is compared with: (a) the healthy reference WN signal, (b) the WN signal measured be-
tween EQK5 and EQK6, and (c) the TAC measured during EQK5. Unlike for EQK5, shown in Figure 10, the structure 
sustains significant additional damage during EQK6. This is evidenced by the shift to higher TAC values, with re-
spect to the pre-earthquake WN (a) and the previous earthquake EQK5 (b). 

 
A quantitative comparison of PDFs can be achieved using the Kullback-Leibler (KL) divergence 
(Kullback & Leibler, 1951), 𝐷𝑖𝑣, which is a metric of the distance between two distributions, de-
rived using Eq. 1:  
 𝐷𝑖𝑣ሺ𝑓ሻ ൌ ∑ 𝑓ሺ𝑥ሻ𝑙𝑜𝑔 ቀ

ೝሺ௫ሻ

ሺ௫ሻ
ቁ௫  (1), 

where 𝑓 is a PDF evaluated at values 𝑥 and the superscripts 𝑒 and 𝑟 denote the earthquake and 
the reference distributions, respectively. 
 
When applied to the two earthquake signals EQK5 and EQK6, the KL divergence values underline 
the observations made in Figure 10 and Figure 11. While some damage is present in the structure 
during EQK5, this damage has been sustained before and little additional damage is observed. 
Conversely, the specimen contains more damage during EQK6, which also represents a significant 
increase in damage with respect to the previous earthquake and the pre-earthquake WN signal.  
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Figure 12 The absolute and cumulative tracking of damage can be summarized by the KL divergence between the 
distribution of the TAC from an earthquake and changing reference distributions. This is underlined by comparing 
the KL divergence for the TAC of EQK5 (a), during which little additional damage is sustained, with the KL diver-
gence of the TAC of EQK6 (b), during which significant additional damage is sustained.  

An additional demonstration of the capacity of the TAC to track the evolution of damage is shown 
in Figure 13, which contains a representation of the TAC over time including all 8 tested earth-
quakes. As can be seen, damage exists but remains very low for the first 2 earthquakes. The 
damage increases progressively during EQK3 and EQK4, before the structural condition drastically 
deteriorates during EQK6. The fifth earthquake (EQK5) and the seventh earthquake (EQK7), which 
has a lower amplitude than the previous earthquake, do not introduce significant damage into the 
structure. Despite not enabling a straightforward quantification of damage, this data-driven indi-
cator further delivers information on damage severity, with respect to known previous structural 
state. 
 
Although the healthy reference is established on ambient vibrations, the DSFs are derived from 
earthquake signals. This choice stems from the fact that during strong motions, the nonlinearity 
sustained by the structure is larger, while the structure regains stiffness during post-earthquake 
ambient vibrations (Astorga et al., 2018). However, given amplitude-dependent effects (see Sec-
tion 5.1), transient signals, and the frequency content of the earthquake signal may influence the 
DSFs, a comparison with the TAC derived for post-earthquake WN is provided in Figure 14. While 
the trend is the same than for the TAC derived from earthquake signals, the sensitivity achieved 
with WN-based DSFs with respect to damage is reduced. This is in agreement with the theory, as 
the residual stiffness drop is less significant than the minimum transient stiffness during an earth-
quake event and justifies the choice of earthquake signals for damage detection. 
 

 
Figure 13 Evolution of the TAC over the eight earthquakes, when damage in the structure increases gradually. A 
significant increase is observed for EQK3, EQK4, EQK6, and EQK8, which correspond to earthquakes that increase 
the structural damage significantly. 
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Figure 14 Evolution of the TAC derived from post-earthquake WN over the eight earthquakes (no WN test was con-
ducted after EQK7), when damage in the structure increases gradually. A significant increase is observed for EQK3, 
EQK4, and EQK8, which correspond to earthquakes that increase the structural damage significantly. However, the 
sensitivity of the TAC with respect to damage is less pronounced when it is derived from WN than when it is derived 
from the earthquake signal (see Figure 13). 

4.2 From features to damage tags: the role of physics-based models 

While purely data-driven models are adept at the task of damage detection, and possibly its lo-
calization, building tagging implicitly involves damage quantification, with the purpose of charac-
terizing the induced faults and to offer hints for assessment of residual capacity. These higher 
complexity tasks in terms of damage identification and characterization require finer grain infor-
mation, which can be furnished via use of physics-based (engineering) models. 

Nonlinear building models 

Structures that experience seismic shaking are shifted to a nonlinear response regime. This im-
plies that any considered structural model should account for the inherent material and geometric 
nonlinearities as well as the dynamic and hysteretic effects that describe such systems. While 
regional applications often rely on single-degree-of-freedom models (Martins & Silva, 2021; Or-
lacchio et al., 2021; Villar-Vega et al., 2017), we implemented a multiple-degree of freedom 
mode, to reduce the discrepancy between sensor data and model predictions. 
 
The tested specimen is a mixed building with reinforced-concrete (RC) shear walls and URM walls, 
therefore a coupled model combining a shear-dominated part modelling the URM walls and a 
bending-dominated part modelling the RC shear wall is used (see Figure 15). The shear-dominated 
part and the bending-dominated part are connected using truss elements, as typically done for 
high-rise buildings (Capsoni & Moghadasi Faridani, 2016). 
 
The OpenSees software framework (McKenna et al., 2010) is used to implement the modelling 
strategy. The nonlinearity of the URM walls is lumped into shear springs, modelled as pinching4 
springs (Mazzoni et al., 2006). The RC shear wall is modelled as a beam element with the nonlinear 
Concrete02 material.  
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Figure 15 Multi-degree of freedom model for simulation of nonlinear behavior under earthquake loading of the 
building specimen that has been tested on a shake table. 

The construction of fragility curves requires multiple forward dynamic simulations of the building 
model. Therefore, 50 ground-motion signals have been scaled to 14 amplitude values ranging 
from 0.02g to 1.4g. 
 
An important step in constructing fragility curves consists in defining damage states. While pre-
senting a crucial step, a universal definition is not available. The following damage-state attribu-
tion has been adopted: 
 

 Slight damage – corresponding to a green tag – is attributed to the structure, if less than 
four wall elements yielded  

 Moderate damage – corresponding to an amber tag – is reached, when more than four 
wall elements yield, if any URM spring exceeded a drift corresponding to 2.5 times the 
spring’s yield drift. In addition, moderate damage is reached when the average roof drift 
ratio (ARDR) exceeds 1.5 times the ARDR corresponding to the yield point, derived with a 
static nonlinear (pushover) analysis, a value often adopted for URM buildings (Lagomar-
sino & Giovinazzi, 2006). 

 Extensive damage – corresponding to a red tag – is attributed to the simulation runs, for 
which the ARDR exceeded 40% of the estimated maximum ARDR, corresponding to a drift 
of 0.4% - often attributed to the ultimate shear deformation of URM. 

 
While this damage-state attribution presents only one option among many, the framework is flex-
ible with respect to the exact formulation and the number of damage states, which could be 
elaborated together with decision-makers. 
 
Fragility curves are derived by least-square optimization of a log-normal cumulative density func-
tion, formulated as 𝑝ሺ𝑑  𝐷|𝑥ሻ  ൌ  0.5 ∙  ሺ1  erfሺlogሺ𝑥ሻ െ 𝑎ሻ/𝑏ሻ, where 𝐷 denotes damage state 𝑖; 𝑥 
corresponds to either an IM characterizing the ground motion or a measurable DSF; 𝑎 and 𝑏 denote 
two variables to be derived through optimization; and 𝑒𝑟𝑓ሺ𝑥ሻ denotes the error function that gives 
the probability of a random normally-distributed variable falling in the range ሾെ𝑥, 𝑥ሿ, given by 
𝑒𝑟𝑓ሺ𝑥ሻ  ൌ  ଶ

√గ
 𝑒ି௧

మ
𝑑𝑡

௫


. 

 
A classical fragility curve is derived with respect to an advanced IM (the geometric mean of spec-
tral acceleration values at 23 periods) that characterizes the ground motion. This fragility curve is 
shown in Figure 16. The fitted curve is shown as a dotted line along the cumulative distribution of 
the simulation results. 
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As explained in Section 2.1, reformulating fragility functions with respect to measurable DSFs is 
proposed. Such DSFs include the building response during the earthquake, which is expected to 
reduce uncertainties in the post-earthquake building tagging. In order to reduce the influence of 
the properties of ground-motions signals, such as earthquake duration and distribution of energy 
over time, the fragility functions are formulated with respect to median values of DSFs over the 
duration of an earthquake. This approach presents a loss of information with respect to the time-
evolution of DSFs, as shown for example in Figure 8 and the probabilistic distribution of DSFs, 
such as shown in Figure 10. Therefore, a combination of statistical damage-detection and model-
based damage quantification may offer additional robustness. 
 
Such fragility curves are shown in Figure 17 for the TAC, Figure 18 for the KPRX, and in Figure 19 
for the MER. For the TAC and the KPRX, a good separation between the damage-states is ob-
served. The MER separates green tags from damaged buildings, which is of high importance, but 
does not provide a high performance in delimiting amber and red tags. 
 

 
Figure 16 Classical fragility function with respect to an IM that characterizes the ground motion. 

 
 

 
Figure 17 Fragility function with respect to the TAC, a DSF that can be measured within the structure. 
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Figure 18 Fragility function with respect to the KPRX, a DSF that can be measured within the structure. 

 
Figure 19 Fragility function with respect to the MER, a DSF that can be measured within the structure. 

4.3 Application to shake-table test data 

As described in the previous Section 4.2, DSF-based fragility functions need to be formulated with 
respect to median DSF values, in order to increase their robustness with respect to variations of 
the ground-motion. The correlation of the median TAC with four metrics of nonlinearity/damage 
– namely the hysteretic work, the DG (EMS-98 damage scale) observed from visual inspection on 
the specimen after the test, the peak transient roof drift ratio, and the residual roof drift ratio – 
is  shown in Figure 20. In a similar manner, the correlation between a second DSF (MER) and the 
four nonlinearity indicators is provided (see Figure 21). 
 
The following observations are made: 

 As for the model predictions, the nonlinearity indicators scale well with the DSFs.  
 While the DSFs do not provide a strong deviation between the strong earthquakes (EQK6 

and EQK8), they provide a clear separation between non-damaging earthquake (EQK1 & 
EQK2) and damaging earthquakes, as well as between slight and extensive damage. This 
is a necessary starting point for successful building tagging based on a traffic-light logic. 

 When compared to visually observed DGs (EMS98 damage scale), the DSFs provide a more 
refined estimation of damage, which could be of interest for subsequent repair design (as 
made in RISE task 4.3). 

 Figures 19 and 20 are established with respect to the healthy reference state. A more 
refined increase in damage for the strong earthquakes EQK6 and EQK8 may be obtained 
by redefining the reference (as shown in Figure 11), thus paving the way towards state-
dependent damage detection (i.e. assessing the increase in damage, rather than the pres-
ence of damage). 
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Figure 20 Correlation of the TAC with four nonlinearity indicators:  hysteretic work (top left), damage grade (DG) 

observed from visual inspection after the test (top right), maximum transient roof drift ratio (bottom left), and re-
sidual roof drift ratio (bottom right). 

 
Figure 21 Correlation of MER with four nonlinearity indicators:  hysteretic work (top left), damage grade (DG) ob-

served from visual inspection after the test (top right), maximum transient roof drift ratio (bottom left), and resid-
ual roof drift ratio (bottom right). 
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The combination of the TAC values, derived from measured acceleration and shown in Figure 20, 
and the DSF-based fragility functions (plotted in Figure 17) lead to a prediction of the probability 
of the building exceeding a given damage-state, analogously to damage-state predictions with 
classical fragility curves. The predicted probabilities – which sum up to 1 – are shown for all eight 
earthquake signals in Figure 22. The white bar consists in a fully linear structure that did not even 
sustain minor damage (see Section 4.2 for the definition of damage states). Based on the TAC, 
the building is not predicted to sustain extensive damage, not even under EQK8. This is a result 
of the high median TAC value for extensive damage by the physics-based model and shows some 
limitations of model predictions with respect to real dynamic hysteretic behavior of buildings. 
Nonetheless, post-earthquake inspection of the building after EQK concluded in DG3, which does 
not necessarily correspond to extensive – but rather moderate – damage, meaning that observa-
tions and predictions are in correspondence. 
 
The damage tags predicted with the MER-based fragility function are shown in Figure 23. Com-
pared against the TAC-based predictions, the results are slightly less conservative and predict 
green tags with more probability. On the other hand, the KPRX-based predictions (see Figure 24) 
tends towards more conservative predictions, especially for the stronger earthquakes. Again, 
these discrepancies show the limit of simplified model to predict dynamic nonlinear behavior of 
structures. 
 
To reduce the dependency on a single DSF, the predictions from all three DSFs are combined into 
a single probabilistic prediction, as shown in Figure 25. Importantly, combining several DSFs does 
not incur additional costs or model simulations, but rather extracts more information from the 
same signals, whether measured or simulated. 
 
A building tag is attributed based on the following logic: 

 If the joint probability of no and minor damage exceeds 80% or if 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑ௌ is below 1.33, 
then a green tag is issued. The 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑ௌ is derived as: 
𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑ௌ ൌ  𝑝ሺ𝑑  ′𝑁𝑜𝑛𝑒′ሻ ∙ 0   𝑝ሺ𝑑  ′𝑀𝑖𝑛𝑜𝑟′ሻ ∙ 1  𝑝ሺ𝑑  ′𝑆𝑙𝑖𝑔ℎ𝑡′ሻ ∙ 2   𝑝ሺ𝑑  ′𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑣𝑒′ሻ ∙ 3 . 

 If the joint probability of slight and extensive damage exceeds 60% or if the probability of 
extensive damage exceeds 25%, a red tag is issued. This is a conservative approach that 
yields a rather high probability of red tags, owing to the reduced seismic capacity of dam-
aged buildings. 

 An amber tag is issued for buildings that have neither a green nor an amber tag. 
 
The exact logic for attribution of tags influences the number of green, amber, and red tags and 
thus, the number of evacuated people. Therefore, such tagging rules should be established to-
gether with competent authorities, such as civil protection. 
 
The tags that are attributed to the test building are shown in Figure 25 as the background color 
of the probability plots. In general, the tags are reasonable given the observations made on the 
building specimen (see Table 2). Less conservative attribution rules – for instance based on the 
tag with the highest probability – would have resulted in a green tag after EQK5 and an amber 
tag after EQK8 – which is even more in line with the attributed damage grades from visual inspec-
tion. 
 
In addition, if the building is tagged safe after EQK4, the purely data-driven approach, outlined in 
Section 4.1, would have led to the conclusion that little additional damage is present in the struc-
ture after EQK5. Such a combination of data-driven and model-based tagging is a promising future 
development of seismic SHM. 
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Figure 22 Prediction of post-earthquake building tag probabilities based on TAC for all eight ground motions. 

 

 
Figure 23 Prediction of post-earthquake building tag probabilities based on MER for all eight ground motions. 

 

 
Figure 24 Prediction of post-earthquake building tag probabilities based on KPRX for all eight ground motions. 
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Figure 25 Prediction of post-earthquake building tag probabilities for all eight ground motions based on the combi-
nation of the three DSFs: TAC, MER, and KPRX. The final tag, attributed based on tagging criteria, corresponds to 
the background color of the subplots. The probability of extensive damage remains low, yet arises from EQK, which 
corresponds to the first earthquake, for which major damage has been observed on the specimen. 

5. Perspectives on data-driven building tagging 

5.1 Quantifying undamaged amplitude-dependent stiffness changes by monitor-
ing demolitions 

Ambient vibration measurements offer reference measurements to establish the healthy ranges 
and dynamic properties of existing buildings. Yet, the comparison of ambient and forced vibration 
experiments in real scale structures has brought to light the existence of reversible nonlinear 
behavior due to changes in excitation amplitude. (Song et al., 2019) investigated the inferred 
stiffness properties of a two-storey concrete building for varying excitation amplitude and ob-
served an almost linear decreasing relation between the identified frequencies and the excitation 
amplitude. (Michel et al., 2011) used a shaking mass to study the amplitude-dependent modal 
properties and proposed a link between natural frequencies from ambient vibrations and an equiv-
alent elastic stiffness. 
 
In order to increase the dataset of amplitude-dependent dynamic properties of existing URM build-
ings in Europe, we conducted vibration monitoring of multiple buildings during their planned dem-
olition in the greater Zurich area in Switzerland (Martakis, Reuland, & Chatzi, 2022). The acceler-
ation data recorded during construction-site activities, prior to the first damage to structural ele-
ments, allows for extraction of signal windows exhibiting changing levels of shaking, while ensur-
ing that the findings are not influenced by any damage. In regions with low-to-moderate seismic 
hazard, such as Switzerland, measurements during demolition activities form a valuable – if not 
exclusive – source of vibrations to study the amplitude-dependency in the response of masonry 
building to dynamic loadings. Eventually, such data contributes to formulate robust thresholds for 
normal behavior of masonry structures in view of data-driven damage-detection schemes, such 
as described in the previous sections. 
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Monitoring planned demolitions 

In the following, the results for three measured real-world buildings, also presented in the RISE deliverable MS37, 
are briefly presented. By means of the Stochastic Subspace Identification algorithm (van Overschee & de Moor, 
1996), a baseline estimation of the modal properties is established (see  

Table 3). The demolition of masonry buildings involves gradual removal of elements, typically 
from the top to the bottom of the building, with the shovel of an excavator (see Figure 26). Most 
of the non-structural elements are removed beforehand, leaving the structure at a bare state. 
During demolition, buildings are subjected to hits and pulls of arbitrary direction and intensity. 
Such impulse-like hits provide a rich variety of dynamic building responses. As the demolition 
starts from the roof, there is time window without removal of substantial mass or damage to 
structural components. 
 
With the Eigensystem Realization algorithm (ERA) (Juang & Pappa, 1985) the modal properties of 
the building are derived for the time-windows of each individual impulse. Details on the derivation 
of modal properties under impulse responses recorded during demolition can be found in (Martakis 
et al., 2021a). 
 
Characteristic impulse responses of different amplitude levels are plotted in Figure 26 (right). The 
corresponding displacements are approximated for illustration through double integration of the 
acceleration signals. The maximum computed displacement is below 0.05 𝑚𝑚 and the equivalent 
linear range is typically considered to extend until 1 mm (Lagomarsino & Cattari, 2015; Martakis 
et al., 2021a). Thus, the structure is assumed to respond in the elastic range during demolition 
and no damage due to excessive loading is expected. In addition, the transitory nature of the 
stiffness drop is verified, as there is no trend towards reduced frequencies over time. 
 

 
Figure 26 Demolition process from top to bottom with an excavator shovel (left) and characteristic impulse re-

sponses of various amplitude levels (right). 
All three measured buildings are URM buildings and have been built in the first half of the 20th century, before the 
introduction of seismic prescriptions into Swiss building codes. Such masonry buildings, lacking seismic design, 
form the largest part of the Swiss building inventory. Photos of the buildings prior to the start of the demolition are 
provided in Figure 27. All three buildings have a residential function and consist of two regular floors above ground 
level, in addition to an attic in the steeply sloped roof, and one floor, which is either partially or fully placed under 
the ground level. A detailed description of the building properties, following the Global Earthquake Model taxonomy 
(Crowley et al., 2012), is reported in  

Table 3. All three buildings are mostly regular in plan and elevation. The dynamic response of 
buildings to hits with the excavator are recorded using eight tri-axial MEMS-based accelerometers, 
which are distributed over the height of the building at strategic locations at the slab levels of the 
buildings, as shown in Figure 27. 
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Figure 27 Photos of the three buildings taken prior to the demolition (top) and floor plans of the three studied URM 
buildings with sensor positions are marked with red crosses (bottom). Additional details of the measurements can 
be found in RISE milestone 37. 
 
Table 3 Properties of the studied buildings. 

Property Building A Building B Building C 
Year of construction 1922 1927 1930 
Number of floors 
(above ground) 

2 + Attic 2 + Attic 2 + Attic 

Number of floors (be-
low ground) 

1 1 (partially below 
ground) 

1 (RC, partially be-
low ground) 

Floor system Flexible wooden 
floors 

Flexible wooden 
floors 

RC floor 
(cast-in-place) 

Roof system Sloped, flexible 
wooden rafters 

Sloped, flexible 
wooden rafters 

Sloped, flexible 
wooden rafters 

Occupancy Residential Residential Residential 
Footprint 78 m2 52 m2 94 m2 
Natural frequency 
(from measurements) 

6.4 Hz (bending X) 
7.4 Hz (bending Y) 

6.9 Hz (bending X) 
5.8 Hz (bending Y) 

6.0 Hz (bending X) 
7.3 Hz (bending Y) 

 
Amplitude-dependent reduction of natural frequencies 

Construction activities with heavy machinery prior to the actual demolition (removal of non-structural elements, 
site-preparation works etc.) generate a large dataset of hits that cover a multiple amplitudes, directions, and dura-
tions. Using the ERA algorithm, which is particularly suited for analysis of impulse response signals, the dynamic 
properties are derived for each hit. The frequency corresponding to the first bending mode in the direction with the 
strongest hits is shown for all three buildings in Figure 28. The frequencies are normalized with respect to the cor-
responding reference frequency obtained before demolition activities started (see  

Table 3). Although input excitations cannot be measured directly, the intensity metrics of the 
building response serve as a proxy to cluster the impulses into groups of similar amplitude. The 
maximum root mean square (RMS) acceleration among all sensors is chosen here as such an 
intensity metric. 
 
A clear frequency drop with increasing amplitudes can be observed for all three URM buildings. 
For building A, more hits have been recorded and the increased number of hits in the low-ampli-
tude range (below 1 mg) translates to a higher variability. Thus, for building A, the identified 
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frequency follows an almost normal distribution with a mean of 0.98 and a standard deviation of 
0.03, both with respect to the reference frequency derived from ambient vibrations. 
 
A comparison of the frequency distributions obtained for impulses with low and high RMS, respec-
tively, shows the reduction of frequency. However, the drop is larger for buildings A and B, with 
a mean around 10% frequency drop, while building C shows less than 5% frequency drop, even 
if the hits have similar intensity. The structural system – building C, unlike buildings A and B, has 
stiff RC floors – may explain the lesser amplitude-dependency of the frequency. For building A, 
on the other hand, the stiffness reduction is notable for hits with the RMS of acceleration (𝑎ோெௌሻ 
exceeding 2, this tendency starts at lower intensity for building B (at 𝑎ோெௌ ൌ  1𝑚𝑔) and building C 
(at 𝑎ோெௌ ൌ  0.7𝑚𝑔). As the acceleration may depend strongly on the location, angle, direction and 
severity of the hit with the shovel, as well as the distance between the hit and the closest sensor, 
approximate drift values are recommended to be used in future work to yield more stable results. 
However, deriving approximate displacements, requires accelerometers with high sensitivity and 
no drift in low frequencies. Still, the amplitude, at which the stiffness starts to drop significantly, 
and the level of drop may be building-dependent. While the intensity measure is chosen to be the 
maximum RMS acceleration of all channels, other measures, such as Arias intensity and peak 
acceleration have also been assessed, showing a lesser fit. 
 
Nonetheless, the observed drop of the stiffness of the structural system, when vibrations exceed 
amplitudes that are typically associated with ambient conditions, is valuable as it lays the foun-
dation for several applications of SHM in seismic context: 

 formulating correlations between properties derived from ambient vibrations and proper-
ties under large-amplitude shaking is crucial for predictions of nonlinear behavior and the 
ultimate capacity with models, whose elastic properties are updated using vibration meas-
urements (Martakis, Reuland, Imesch, et al., 2022). 

 data measured in full-scale systems help in attributing the source of nonlinearity to pos-
sible sources, such as soil-structure interaction, masonry stiffness and transfer of forces 
between structural elements (Martakis et al., 2021b).  

 deeper understanding of the reversible amplitude-dependent variations of modal proper-
ties is required to reduce the probability of false positives in automated data-driven dam-
age-detection setups, as proposed in Section 2 and demonstrated in Section 4. 

 
 

 
Figure 28 Frequencies, derived with the ERA from the hits measured in three buildings. Frequencies correspond to 
the mode in the direction of the strongest hits and are normalized with respect to the reference identification under 
ambient vibrations. For better readability, axis differ between the three subplots. 
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5.2 Domain-adaptation from model to shake-table tests 

A known bottleneck when training methods that rely on monitoring data that are specifically ex-
tracted from a small subset of instrumented structures is their ability to generalize in terms of 
condition assessment of further building structures. As part of the tools developed in Task 4.4 of 
RISE, we demonstrate a domain adaptation scheme that boosts generalization potential. As an 
operation, domain adaptation aims to improve the predictive performance of a classifier in the 
target domain, for which no labels are available, by training the classifier with labelled data from 
a source domain (where data is richer) and limited unlabeled data from the target domain. In this 
case, the source domain consists of a simulation model (Figure 29), which is a parametrized two-
dimensional equivalent frame model of masonry buildings. In addition to the material properties, 
the geometry is parametrized as well and thus, the model is representative of typical building 
structures, while the target domain is a real-world monitored structure, in this case a reinforced-
concrete frame with masonry infill walls tested on a shake table (Figure 31). 
 
A main ingredient of the proposed approach lies in the development of an extensive dataset of 
non-linear dynamic simulations. As aforementioned, we choose masonry buildings for our illustra-
tions, as these comprise a characteristic building typology in Switzerland. A similar framework can 
be cast for moment frame structures that are representative of steel or reinforced concrete build-
ing systems. Multiple DSFs are computed based on ambient vibrations that would be monitored 
after an earthquake and ML classifiers are trained, able to fuse multiple DSFs into unified and 
robust damage indicators. 
 
In order to enhance the generalization of the knowledge obtained from training on simulated 
systems to real structures, a domain-adaptation framework is proposed. As demonstrated in Fig-
ure 30, the proposed framework is trained on simulations and adapted to the new domain with 
limited data from the actual monitored structure (of interest), extracted from its healthy (or base-
line) state. A Domain-Adversarial Neural Network approach (DANN) is deployed (Ganin & Lem-
pitsky, 2015), which capitalizes on Generative Adversarial Networks (Goodfellow et al., 2014). 
 

 
Figure 29 Equivalent frame model: (a) Generic representation of the parametric model, (b) Discretization and non-
linear hinge positions, (c) Backbone curve formulation for the nonlinear hinges. 
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Figure 30 Overview of the domain adaptation framework for robust damage prediction in real structures, based on 
simulations and on limited healthy data from the monitored structure. 

The performance of the developed domain adaptation scheme is evaluated on experimental data 
from a large-scale masonry-infilled RC frame. The structure, tested by (Stavridis et al., 2012), 
forms a two-dimensional three-floor frame structure and thus, complies with the modelled geom-
etries considered by the simulator. However, the tested system comprises a material that is sig-
nificantly different to the developed numerical simulator. The experimental system consists of RC 
frames and infill walls, while the parametrized numerical model was developed to represent URM 
shear-wall buildings. Domain adaptation is thus exemplified on a challenging case of discrepancy 
between the simulated training set and the real building, on which damage classification is at-
tempted. 
 

 
Figure 31 Overview of the test specimen and dynamic tests: (a) photo of the tested specimen, (b) summary of sen-
sor locations used to derive DSFs and dimensions of the specimen, (c) backbone curve of the peak displacements 
and corresponding base force, together with the response-history of two ground motions. 

The experimental structure was excited with the ground motion recorded during the 1989 Loma 
Prieta earthquake, which was scaled to increasing amplitudes; see (Stavridis et al., 2012) for a 
more thorough description of the experimental campaign.  
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Damage classification is performed for eight tests, with intensities ranging from 20% to 120% of 
the original earthquake. The measured acceleration signals at five locations marked in Figure 31b 
are used to compute the DSFs outlined in Section 3.  

 
Figure 32 (a) Definition of empirical damage states on the basis of a bilinear approximation of a generic push-over 
curve, (b) Damage-state distribution of the dataset 

The damage state observed on the specimen after each earthquake is also reported in Figure 31c. 
Given the damage state is based on observations and qualitative assessment, the damage states 
may not fully correspond to the definition used in the numerical simulations and outlined in Figure 
32a. Yet, they reflect realistic conditions. Following each earthquake motion, the structure was 
subjected to WN excitations that are used here to derive the DSFs. 

Damage prediction with pre-trained classifiers 

As a reference point, the predictive performance of the ML algorithms, pre-trained on simulation 
data is evaluated on the experimental data. Two classifiers, the XGBoost (Chen & Guestrin, 2016), 
which is based on the gradient boosted decision trees (Friedman, 2001) parallelizing the training 
of multiple decision trees, and convolutional neural networks (CNN) are tested on the DSFs derived 
from the WN excitation in different damage states. The test data are segmented into 10-second 
windows, yielding a total of 567 labeled datapoints comprising 261 DS 0 (46%), 109 DS 1 (19%), 
98 DS 2 (17%), and 99 DS 3 (17%).  
 
As explained in the subsequent section, 50% of the healthy experimental data are used to train 
the domain adaptation network. In order to keep the same test set for the supervised and the 
DANN architectures, 50% of the healthy data, labeled as DS 0, are excluded from the test set, as 
they are used to train the DANN. Figure 33a and b visualize the predictive performance of the pre-
trained networks, when exposed to the experimental data (target domain). The XGBoost archi-
tecture achieves an absolute accuracy of 58% and a soft accuracy (which accepts a misclassifica-
tion by +/- 1 class) of 89%. The confusion matrix exposes a significant bias towards the predicted 
class 3 (DS 2), while the network shows poor performance in separating the healthy data (class 
1 and 2) from the damaged classes. The performance of the CNN network is significantly worse, 
achieving an absolute accuracy of 25% and a soft accuracy of 77%. Again, there is a clear bias 
with respect to predicted class 3. These results expose the inability of pre-trained networks to 
generalize their predictive performance in domains that differ significantly from the training set. 
Indeed, ML classifiers over-fit to the source domain (simulations) and thus, cannot adapt to the 
target domain, which in this application differs from the source domain in terms of material (con-
crete vs simulated masonry), boundary conditions (in-filled walls) and origin (simulations vs ex-
perimental data with inherent noise). 
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Figure 33 Predictive performance of Machine learning algorithms in the target domain: (a) pre-trained XGBoost, (b) 
pre-trained CNN and (c) DANN. 

 
Damage prediction with domain adaptation 
Domain adaptation aims to improve the predictive performance of a classifier in the target domain, 
for which only limited data, referring exclusively to the healthy state of the structure, are available. 
The developed DANN architecture is deployed, comprising three elements: a latent-space feature-
extractor, a damage-classifier, and a domain-discriminator. Apart from the common training set 
containing the simulation data, 50% of the healthy data from the target domain (DS 0) are con-
sidered for training, without providing the label of their damage state. Finally, a binary domain 
label is provided: 0 for the source domain and 1 for the target domain.  
 
The absolute accuracy of the DANN framework reaches 67% and a soft accuracy of 94% (Figure 
33c), indicating significant improvement compared to the pre-trained networks. The DANN sepa-
rates successfully the healthy class (DS 0) from damaged classes; and discriminates heavy dam-
age classes (DS 2 and 3) from minor damage (DS 0 and 1). The prediction of DS 1 is only in 
37.6% of the cases correct, although the confusion is limited to ±1 damage states. The definition 
of the damage in the experimental data was based on visual observations and involved qualitative 
evaluations of the damage state based on four empirical levels, namely “no damage”, “minor 
damage”, “some damage” and “major damage”. Similar qualitative levels have been adopted for 
the formulation of the damage thresholds in the simulation data. Although the hard assumptions 
for the damage state thresholds do not directly affect the healthy state and the severe damaged 
states, DS 1 and DS 2 are sensitive to the exact values of the thresholds and the assumptions 
made when deriving the equivalent yield point. Thus, the observed uncertainty in predicting DS 
1, as well as the partial confusion between DS 2 and 3 are deemed acceptable. 
 
Overall, the deployed domain adaptation framework yields satisfactory results in predicting the 
damage state in the target domain, from which very limited and unlabelled data have been used 
for training. By comparing the performance of the DANN with the corresponding pre-trained CNN, 
sharing the same architecture in the feature-extractor and the damage-classifier segments, a 
significant improvement in prediction accuracy is achieved. The limited information from the ex-
periments, which does not contain any data from damaged configurations, allows the DANN net-
work to adapt successfully to the target domain. These results demonstrate the potential of DANN 
to transfer knowledge from numerical simulations into real-world monitoring applications. 
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6. Concluding remarks 

Within WP4, Task 4.4, structural-health monitoring techniques have been extended and newly 
developed for post-seismic safety tagging of buildings, in support of rapid loss assessment. These 
techniques have been packed into a demonstrator (in MATLAB code), which can be exploited by 
the community as a baseline tool for RLA. The derived data-informed tags may be issued to build-
ing users and offer guidance to inspectors and first responders in near-real time and thus, presents 
a significant improvement with respect to current post-earthquake inspection practices that heav-
ily rely on visual inspections. Fragility curves have been formulated with respect to damage-sen-
sitive features that contain information about the building response during the earthquake and 
thus, may improve upon current fragility curves that rely only on intensity measure that charac-
terize the ground-motion, without compromising on the regional applicability of such fragility 
curves. 
 
The conclusions from formulating, demonstrating, and validating SHM-based post-earthquake 
building tagging are as follows: 
 

 SHM provides precise information about an individual structure that has been instrumented 
with sensors. Such sensor information – even when taken alone – is found useful in provid-
ing information about the presence of damage and the evolution of damage over time, for 
instance throughout several earthquakes within a seismic sequence. 

 With a simplified multi-degree-of-freedom model, DSF-based fragility curves are derived 
and used for a measured building response when undergoing a shake-table test. The pre-
dicted damage tags are coherent with the observations from the real structure, indicating 
the potential of SHM-based damage tagging, even when relying on simplified building 
models that may be used at regional scale. 

 Physics-based models are required to enrich the available datasets to train damage clas-
sifiers or establish DSF-based fragility curves. To increase the robustness with respect to 
approximate and simplified models, a domain-adaptation methodology for machine-learn-
ing-based damage classification has been tested and is found to reduce classification errors 
that are committed when using diverging model and damage-state formulations. Only lim-
ited amounts of healthy data are required to adapt the classifier to the domain of real 
buildings, showing potential for installation after foreshocks or first earthquakes within a 
sequence, momentarily increasing the sensing capacities and thus, the number of buildings 
that may be tagged automatically after subsequent shocks. 
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